
FlowValve: Packet Scheduling Offloaded 
on NP-based SmartNICs

ICDCS 2022
Shaoke Xi, Fuliang Li, XingWei Wang

Northeastern University Zhejiang University



FlowValve is a parallel packet 
scheduler for Network Processor 
(NP)-based SmartNICs that offloads 
critical network functions of Linux TC, 
including classifying and scheduling.

● What are the requirements of end-host scheduling?
● The offloading idea
● Why using NP-based SmartNICs?



What are the requirements of packet scheduling?



Complex & Flexible Network Policies

End-host enforces complex network policies to meet SLAs for applications and tenants.

Policy 1: Host.Controller -> highest priority

Controller

P1

HOST



Complex & Flexible Network Policies

End-host enforces complex network policies to meet SLAs for applications and tenants.

Policy 1: Host.Controller -> highest priority

Policy 2: VM1:VM2 -> weighted sharing

Controller

WebP3

P2

P1

VM2

HOST

VM1



Complex & Flexible Network Policies

End-host enforces complex network policies to meet SLAs for applications and tenants.

Policy 1: Host.Controller -> highest priority

Policy 2: VM1:VM2 -> weighted sharing

Policy 3.1: VM1.KVS prior than VM1.ML

Policy 3.2: VM1.ML guaranteed 2Gbps 

KVS ML

Web

Controller

P3

P2

P1

VM2

VM1 VM1

HOST



Complex & Flexible Network Policies

End-host enforces complex network policies to meet SLAs for applications and tenants.

Policy 1: Host.Controller -> highest priority

Policy 2: VM1:VM2 -> weighted sharing

Policy 3.1: VM1.KVS prior than VM1.ML

Policy 3.2: VM1.ML guaranteed 2Gbps 

🌟 Fine-grained traffic control

🌟 Complex network policies

🌟 Flexible support of new algorithms

KVS ML

Web

Controller

P3

P2

P1

VM2

VM1 VM1

HOST



Efficient Enforcement

Single core scheduler works fine under low packet rate.

Scheduling accuracy drops under heavy traffic workloads (e.g., >10Gbps).

Root cause: Single-core scheduling hits the performance bottleneck.

Single core scheduler can easily maintain consistent queue status.

Multi-core scheduling needs inter-core coordination, which is challenging.



The Offloading Idea

Utilize multi-core hardware to accelerate packet scheduling.

Offload classifying and scheduling functions to save CPU cores.



Why using Network Processor-based SmartNICs?



Parallel Packet Processing

● Parallel Scheduling

Embed scheduling function in each 
core’s processing routine.

Many worker cores coordinate to 
perform scheduling algorithms.



Parallel Packet Processing

● Parallel Scheduling

Embed scheduling function in each 
core’s processing routine.

Many worker cores coordinate to 
perform scheduling algorithms.

● Flexible Development

Develop new algorithms in a 
software manner.

Support P4/Micro-C programming.



Hardware Acceleration

● Efficient Flowcache

Specialised cache mechanism 
accelerate packet classification.

Large on-chip memory caches 
millions of flows.



Hardware Acceleration

● Efficient Flowcache

Specialised cache mechanism 
accelerate packet classification.

Large on-chip memory caches 
millions of flows.

● Atomic Instruction

Memory engines conduct atomic 
arithmetic operations to alleviate 
multi-core locking overhead.



Virtualization Support

● Fast Speed

Deliver high performance to VMs 
through bypassing the host 
networking stack.

Meanwhile, conducting network 
policies on the NIC dataplane.

KVM

Controller

VF Driver

KVS ML

Guest OS

VF Driver

VM1

Web

Guest OS

VF Driver

VM1

VF VF VF FlowValve



Challenges



Challenges

● Multi-core parallelism

How to reduce inter-core collaboration?



Challenges

● Multi-core parallelism

How to reduce inter-core collaboration?

● Constrained buffer management

How to avoid congestion on egress 

by handling packets on their way into TX buffers?



Challenges

● Multi-core parallelism

How to reduce inter-core collaboration?

● Constrained buffer management

How to avoid congestion on egress 

by handling packets on their way into TX buffers?

Insight: Abstract TX buffers as a FIFO queue and perform 

specialized tail drop to mix the FIFO queue with expected flow 

proportions.



FlowValve

● Express network policies as a scheduling tree
○ Traffic classes represent by tree nodes.

○ Flow QoS settings represent by tree paths.

NC

WS

ML KVS



FlowValve

● Express network policies as a scheduling tree
○ Traffic classes represent by tree nodes.

○ Flow QoS settings represent by tree paths.

● Parallelly update traffic classes on multi-core NPs
○ Estimate instant flow rate at interior nodes.

○ Enforce rate control at leaf nodes.

NC

WS

ML KVS



FlowValve

● Express network policies as a scheduling tree
○ Traffic classes represent by tree nodes.

○ Flow QoS settings represent by tree paths.

● Parallelly update traffic classes on multi-core NPs
○ Estimate instant flow rate at interior nodes.

○ Enforce rate control at leaf nodes.

NC

WS

ML KVS



FlowValve

● Express network policies as a scheduling tree
○ Traffic classes represent by tree nodes.

○ Flow QoS settings represent by tree paths.

● Parallelly update traffic classes on multi-core NPs
○ Estimate instant flow rate at interior nodes.

○ Enforce rate control at leaf nodes.

NC

WS

ML KVS



Workflow

● Frontend

Take in network policies to 
construct the scheduling tree.



Workflow

● Frontend

Take in network policies to 
construct the scheduling tree.

Populate tree parameters to NICs.



Workflow

● Frontend

Take in network policies to 
construct the scheduling tree.

Populate tree parameters to NICs.

● Backend

Execute labeling function to get QoS 
setting labels.



Workflow

● Frontend

Take in network policies to 
construct the scheduling tree.

Populate tree parameters to NICs.

● Backend

Execute labeling function to get QoS 
setting labels.

Execute scheduling function to 
update traffic classes.



Scheduling Function

● Class update without synchronization on NPs is inaccurate ✗



Scheduling Function

● Class update without synchronization on NPs is inaccurate ✗

● Sequential update leads to extreme low throughput ✗



Scheduling Function

● Class update without synchronization on NPs is inaccurate ✗

● Sequential update leads to extreme low throughput ✗

● Locking at the class level balances accuracy and efficiency ✓



Hierarchical Rate-limiting

● Restrict flow rate with token buckets

(1)token rate of class C
bit rate of class C

worker core frequency



Hierarchical Rate-limiting

● Restrict flow rate with token buckets

(1)

● Adjust token rate at runtime

○ Priority

(2)

token rate of class C
bit rate of class C

worker core frequency

token consumption
rate of class NC

tokens consumed by 
forwarded packets

update interval



Hierarchical Rate-limiting

● Restrict flow rate with token buckets

(1)

● Adjust token rate at runtime

○ Priority

(2)

token rate of class C
bit rate of class C

worker core frequency

token consumption
rate of class NC

tokens consumed by 
forwarded packets

update interval

update interval



Hierarchical Rate-limiting

● Restrict flow rate with token buckets

(1)

● Adjust token rate at runtime

○ Priority

(2)

○ Weight

(3)

token rate of class C
bit rate of class C

worker core frequency

token consumption
rate of class NC

tokens consumed by 
forwarded packets

update interval

update interval



Bandwidth Sharing

● Sharing of unconsumed tokens

lendable token rate of class C

token rate of class C

token consumption rate of class C



Bandwidth Sharing

● Sharing of unconsumed tokens

● Preferent sharing among interior classes

Example: KVS is idle. WS and ML are hungry.

WS borrows from S2. ML borrows from KVS.

lendable token rate of class C

token rate of class C

token consumption rate of class C



Error Analysis

● Single class rate-limiting is accurate

● Main error: propagation delay of token rate adjustment

class update stage



Experiment Setup

● Implementation
○ Frontend: Python

○ Backend: Netronome Agilio CX 40GbE SmartNIC

● Testbed
○ Hardware

■ Nertonome SmartNIC: send + schedule

■ Intel X710 40GbE NIC: receive

○ FlowValve: DPDK driver + mTCP stack

○ Software scheduler

■ Linux HTB: iperf3 traffic generator

■ DPDK QoS Scheduler



Evaluation

● QoS Policy Enforcement

Q1: Can FlowValve enforce network policies?

Q2: Can FlowValve drive line rate?



QoS Policy Enforcement

FlowValve offers better rate conformance than HTB on a 10Gbps link.

HTB FlowValve

Less strict priority Wrong weights



QoS Policy Enforcement

FlowValve drives to line rate while accurately scheduling traffic.

FQ WQ



Evaluation

● QoS Policy Enforcement

Q1: Can FlowValve enforce network policies?

Q2: Can FlowValve drive line rate?

● Offloading Effectiveness

Q3: How many CPU cores can FlowValve save?

Q4: How does FlowValve impact transmission delay?



Offloading Effectiveness

FlowValve contributes to save at least 2 CPU cores when driving line rate.

Packet Size (Byte)

FlowValve DPDK QoS Scheduler

Maximum 
Throughput (Mpps)

Maximum 
Throughput (Mpps)

Used Cores

1518 3.23
2.25 1

3.24 2

1024 4.75 4.49 2

64 19.69 9.06 4



Offloading Effectiveness

FlowValve significantly lowers delay variation.

Bandwidth
(Gbps)

Scheduler
One-way Delay (us)

Mean Standard Deviation

10

HTB 36.74 348.25

FlowValve 30.05 0.30

DPDK QoS 50.51 41.06

40
FlowValve 162.93 (161.01) 0.30 (0.11)

DPDK QoS 70.38 83.29



Conclusion

● FlowValve is the first parallel packet scheduler 

for NP-based SmartNICs that offloads critical 

functions of Linux traffic control.

● FlowValve offers high throughput and 

substantially reduces CPU burdens.



Thanks!


