
FlowValve: Packet Scheduling Offloaded on
NP-based SmartNICs

Shaoke Xi
Northeastern University, China

Zhejiang University
shaokexi@zju.edu.cn

Fuliang Li*
Northeastern University, China

lifuliang@cse.neu.edu.cn

Xingwei Wang*
Northeastern University, China

wangxw@mail.neu.edu.cn

Abstract—Enforcing scheduling policies at end-hosts with
software schedulers suffers from high CPU consumption, low
throughput, and inaccuracy. Offloading scheduling functions to
the network interface card (NIC) provides a promising direction
to address these problems. However, existing efforts in scheduling
offloading suffer from inflexible on-NIC packet schedulers, which
cannot execute complex hierarchies of network policies. In this
paper, we present FlowValve, the first parallel packet scheduler
for Network Processor (NP)-based SmartNICs that offloads
critical functions of Linux traffic control, including packet
classifying and scheduling. The key insight behind FlowValve
is to abstract inherent queues attached to the NIC interface
(wire side) as a single FIFO queue and perform specialized tail
drop to mix the FIFO queue with expected flow proportions.
FlowValve takes advantage of on-chip multi-core parallelism and
hardware accelerations to produce high throughput. Meanwhile,
it substantially reduces CPU and memory burdens on end-
hosts. We prototype FlowValve on a Netronome Agilio SmartNIC
and demonstrate its effectiveness against non-offloaded kernel
schedulers and DPDK QoS Scheduler. We find that FlowValve
outperforms both in accurately enforcing network policies while
driving line rate performance (i.e., 40Gbps), which contributes
to saving at least two CPU cores.

I. INTRODUCTION

In cloud data centers, traditional traffic scheduling on net-
work devices (e.g., switches and routers) are moving toward
network edges (e.g., end-hosts) [1]–[3]. This trend arises
from network traffic isolation requirements between competing
tenants. As data center operators continue upgrading server
NICs from 40Gbps to 100Gbps, enforcing scheduling policies
at end servers with software systems suffers from high CPU
consumption, low throughput, and inaccuracy [4]. An ideal
solution would be offloading packet scheduling onto NICs,
which reduces CPU workload meanwhile benefits from hard-
ware line rate performance [5].

Recently, SoC (System on a Chip) SmartNICs gain signifi-
cant popularity in the data center network for offloading data-
centric computations at server sides. These computations are
characterized by stateful processing of data streams at high
rate. SoC SmartNICs utilize purpose-built processors along
with various domain-specific accelerators to boost packet
processing while maintaining reasonable flexibility. Represen-
tative products of this kind includes Netronome SmartNICs [6]
with NPs (Network Processors), Fungible data processing
units [7] with MIPS64 cores, etc.

Research works have shown considerable performance gains
of offloading applications to SmartNICs, which mainly ben-
efits from their increasing computation power and highly
customizable features [8]–[12]. However, there is still a lack of
explorations for packet scheduling offloading. The inflexible
on-NIC packet scheduler is a primary impediment to enforce
hierarchies of complex network policies. The state-of-the-art
NIC design [13] adopts a programmable packet scheduler to
overcome this difficulty. However, realizing it in ASICs likely
takes years. So we wonder whether it is possible to implement
scheduling algorithms in existing SmartNIC products.

FlowValve Pipeline

Kernel

Scheduler
(qdisc) Classifier

Fliter B

Label Table Scheduling Function F0

SmartNIC

V1 V2

Q0

Filter A

Linux Traffic Control

Wire

PCIe

Fig. 1: FlowValve offloads kernel schedulers onto SmartNICs.

Unfortunately, we find the answer varies depending on the
target SmartNIC architecture. Different architectures lead to
different instruction sets and distinct performance models. So
that a cross-platform scheduling paradigm is very difficult to
design. Our positive answer of the above question is mainly
based on the observations of NP-based SmartNICs. Solutions
to other platforms are beyond the scope of this paper.
Observation 1: Specialized programmable cores on NP can do
rather complex computation and enable us to develop schedul-
ing functions in a software manner. This eliminates difficulties
in designing complicated circuits for stateful processing, which
is common in scheduling algorithms [14].
Observation 2: The multi-core architecture and numerous
on-chip accelerators boost packet processing efficiency. For
example, Exact Match Flow Cache on Netronome Agilio uses
dedicated lookup engines to search the cached flow actions,
which enlarges the corresponding kernel implementation [15]
by 10 times. Generally, making good use of multi-core
parallelism and hardware accelerations can guarantee high
throughput (e.g., 40Gbps or more) while substantially reducing

CPU and memory burdens on end-hosts.
Observation 3: NIC virtualization techniques (i.e., SR-IOV)
combined with offloaded scheduling functions naturally sup-
port multi-queue feature, which is lacking for most software
schedulers [16], [17]. As shown in Figure 1, transmitting
packets of different apps or tenants to the NIC through sepa-
rated virtual function ports (i.e., V1,V2) removes the necessity
of employing a central queue (i.e., Q0) to enforce network
policies. So that the offloaded scheduler can be more efficient
and scalable [18].

In this paper, we present FlowValve, a parallel packet
scheduler on NP-based SmartNICs. The key insight behind
FlowValve is to abstract inherent queues attached to the NIC
wire interface as a single FIFO queue (i.e., F0 in Figure 1)
and perform specialized tail drop to mix the FIFO queue with
expected flow proportions. We start from offloading packet
classifiers and queueing disciplines (qdiscs) of Linux traffic
control [19], e.g., Priority Qdisc (PRIO) [20] and Hierarchy
Token Bucket (HTB) [21]. However, the offloading process is
non-trivial. First, running unoptimized scheduling algorithms
on multi-core NPs results in extremely low throughput. There-
fore, we develop parallel scheduling algorithms along with
new data structures for optimizations. Second, the run-to-
completion processing model and inherent queueing system on
NPs make traffic shaping expensive. Traffic shaping requires
to buffer and resend packets at appropriate times. FlowValve
does not directly perform traffic shaping. Instead, it emulates
shaping by dropping packets, which it predicts would also
be dropped by a hypothetical traffic shaper. FlowValve en-
forces rate control with hierarchical token buckets. It also
supports chaining offloaded qdiscs by performing runtime rate
estimations to keep adjusting token fill rate for the buckets
of different traffic classes. Evaluations on a real NP-based
SmartNIC show that FlowValve can almost achieve the same
rate conformance as a real traffic shaper. FlowValve is open
source and available at [22].

In summary, our main contributions are:
• We explore the capability of NP-based SmartNICs and

propose the first feasible approach to offload end-host
packet scheduling on this platform.

• We develop parallel scheduling algorithms and key data
structures to offload two queueing disciplines of Linux
traffic control, i.e., PRIO and HTB.

• We implement FlowValve prototype on a Netronome
Agilio CX 40GbE SmartNIC. Experiments show that
FlowValve accurately enforces network policies while
driving line rate performance (i.e., 40Gbps). This con-
tributes to saving at least two CPU cores.

II. MOTIVATION

We demonstrate the inefficiency of software schedulers and
the inflexibility of on-NIC schedulers to motivate the need of
offloaded scheduling. As the example shown in Figure 2, when
a server hosts multiple virtual machines, their outbound traffic
should be disciplined to prevent one tenant from occupying too
much bandwidth. Similarly, applications which are running in

the guest machines (e.g., KVS and ML in vm1) also require
appropriate network policies to guarantee their performance.
As for crucial management softwares running in the host OS
(e.g., NC), it is necessary to reserve enough bandwidth for
their communication channels to lessen packet drop.

S1

low priority
(2Gbps, weight: 1)

low priority

weight: 2

KVS ML

Network Controller

Web Server

vm1 app

vm2 app

host app

Legend

output interface10Gbps

high priority

weight: 1
high priority

(2Gbps, weight: 1)

weighted schedule with priority
and guaranteed bandwidth

priority schedule

weighted schedule S0

S2

Fig. 2: Motivation example. Guest OS vm1 runs a key-value
store (KVS) and a machine learning service (ML). Guest OS
vm2 runs a web server (WS). A network controller (NC) runs
on the host OS. These apps together share 10Gbps egress
bandwidth.

More specifically, an administrator may want to specify QoS
policies as follows. First, traffic from NC has the highest
priority. Second, traffic from vm1 and vm2 proportionally
shares the rest of link bandwidth. Vm1 (KVS and ML) gets
two thirds and vm2 (WS) gets one third. Third, in vm1, KVS
is assigned a higher priority than ML. However, to prevent ML
from starvation, it has the guaranteed bandwidth of 2Gbps. So
that at least 2Gbps bandwidth should be available to ML when
the total is more than 4Gbps. Otherwise, ML and KVS share
the bandwidth proportionally to their weights (1:1).

A. Software Schedulers

 0

 4

 8

 12

 0 10 20 30 40 50 60

T
h
ro

u
g
h
p
u
t

(G
b

p
s)

Time (s)

NC WS KVS ML

Fig. 3: Enforce network policies in the motivation example
with Linux traffic control.

We demonstrate the inefficiency of kernel schedulers with
an experiment on a 10Gbps link. The policies are specified
as shown in Figure 2. The root qdsic is PRIO and we direct
the traffic of NC to PRIO’s band 0. We further attach HTB
qdisc to PRIO’s band 2 to serve the traffic from WS, KVS,
and ML. More detailed information of our testbed settings
is reported in Section V. We observe poor rate conformance
as shown in Figure 3. First, the ingress flow rate of NC is
10Gbps. However, it is forced to drop packets from 0s to 15s

although its packets are directed to the highest priority queue.
Second, we specify the ceiling rate of HTB’s root class to
10Gbps. This should throttle the traffic rate under 10Gbps.
However, the total bandwidth consumption from 15s to 45s is
approximate 12Gbps. Third, HTB ignores our priority setting
between KVS and ML. It equally divides bandwidth between
them from 15s to 30s. However, this should only happen
when their total bandwidth (current 6Gbps) is less than 4Gbps.
Previous work [23] studies the inaccuracy of kernel schedulers.
It discovers that the phenomenon is mainly caused by the
global locking overhead upon each packet enqueue. Another
disadvantage of software locks is high CPU consumption
rate [4]. We also evaluate DPDK QoS scheduler [24] under
the same setup. It improves the overall throughput meanwhile
offering good rate conformance. We show that the consumed
CPU cores of both schedulers could be saved by offloading
scheduling functions on SmartNICs (Section V-B).

B. NIC Schedulers

Unfortunately, today’s NIC queueing systems cannot sup-
port complicated QoS policies. For example, most NICs have
multiple FIFO queues controlled by a round-robin scheduler,
which only provides per queue fairness. Some powerful NICs
integrate dedicated traffic manager to buffer and schedule
packets according to predefined schemes [6]. For example, a
typical traffic manager can organize queues with fixed levels of
hierarchy. In each layer, queues are configured with priorities.
Higher priority queues are strictly preferred. Queues of the
same priority are served in a weighted round-robin manner.
Enforcing conditional network policies on these queues (e.g.,
specify guaranteed bandwidth for ML and KVS) requires a
runtime configuration, which is merely supported in today’s
products [25].

III. PROBLEM STATEMENT

In this section, we first overview the workflow of kernel
classful schedulers. Then, we introduce the architecture of
a typical NP-based SmartNIC to elaborate on the challenges
brought by multi-core parallelism. Finally, we sketch out how
FlowValve conducts calculations to overcome these difficulties
and precisely simulate a variety of queuing procedures.

A. Classful Packet Scheduling

Classful packet scheduling in kernel is enforced with a clas-
sifier, multiple queues, and a scheduler (qdisc), as illustrated in
Figure 1. Classes are defined by user policies and correspond
to separated queues. The queue serves aggregated flows over
the same conducted policy. Egress packets first match against
filter rules to be classified into queues. Meanwhile, a scheduler
serves these queues to send packets. For example, PRIO and
HTB are both classful schedulers. PRIO always first sends
packets from the highest priority non-empty queue. HTB uses
a tree of token buckets to support fine-grained traffic control. It
has two features: 1) traffic of each class is throttled at the leaf
token bucket and 2) token insufficient classes can borrow from
those sufficient ones, however, tokens are preferentially shared

among sibling classes [21]. HTB is a commonly used traffic
shaper and large-scale deployed in production networks [26].

B. NP-based SmartNICs

Core 9Core 5
Core 6

Core 7
Core 8

Core 1
Core 2

Core 3
Core 4

Reorder / Traffic Manager

Core 11
Core 12

Cluster

Dispatcher

Rx Ring Buffer

Tx Ring Buffer

Run-to-completion
Worker

Local
Mem

 Registers
Core 10

Fig. 4: An example of NP-based SmartNIC architecture.
Packets are received from PCIe and forwarded to the wire.

SmartNICs open programming interfaces to developers for
rapid innovation in supporting new network functions. NP-
based SmartNICs utilize network processors to provide pro-
grammability. However, packet processing in NICs needs to
meet a stringent time budget. So that network processors tailor
specialized architectures and programming models to meet the
performance goal. Figure 4 briefly shows the architecture of
a Netronome SmartNIC. For the sake of space, we omit some
accelerators (e.g., DMA Engine) and shared memory units
(e.g., external DRAM).

The network processor has a large number of indepen-
dent processing cores (also named micro-engines), which are
grouped into several clusters. Ingress packets are distributed
to one cluster by load-balancing module and waited to be
pulled by the available cores. The processing core is further
threaded (i.e., 4 or 8 threads). Threads share registers and
local memory as well as executing the same program code.
Programmers can develop NIC applications with high-level
languages (e.g., P4 or Micro-C) following a run-to-completion
software model. More specifically, a worker core is assigned to
process one packet from the beginning to the end, including
parsing, classifying, modifying, forwarding, etc. Finally, the
reorder system sends packets out roughly according to their
incoming sequences. Meanwhile, a manager core (other than
worker cores) collects freed buffers and re-links them to the
buffer lists for new incoming packets.

This architecture is inherently suitable for parallel packet
processing, especially when there is little or no intervention
between calculations performed by independent cores. We
define such computation tasks as stateless processing. For
example, the calculation of TCP checksum only involves
a single packet. Conducting this calculation on a number
of cores simultaneously without synchronization does not
compromise the validity. In contrast, stateful processing cannot
be performed precisely in the absence of synchronization. For

example, if there is a flow counter of value C read by two
cores simultaneously, each core increases it by one locally
and writes the value of C + 1 back to the variable memory.
Then the result is imprecise because two packet passing only
results in one counter increment. This could happen on some
network processor systems that lack flow-to-core affinity. In
order to improve statistics precision, we need a synchroniza-
tion mechanism to protect the counter increment procedure,
e.g., by locks. However, this inevitably lowers performance
because one processing core must wait until the other core
finishes using the shared variables. Unfortunately, scheduling
algorithms desire much more complicated stateful processing
than the counter example. They need to decide whether and
when to forward a packet based on the global traffic status.
We further elaborate on the challenges of offloading a classful
packet scheduler.

C. Challenges

Offloading scheduling algorithms onto NPs is challenging.
To deliver high performance, packet processing on NPs is
highly optimized by taking advantage of parallel processing.
Unfortunately, this fundamentally restricts offloaded choices
and offloading implementations, which makes end-hosts qdiscs
hard to migrate. We take the priority qdisc (PRIO) as an
example.
Challenge 1: Multi-core parallelism. The kernel PRIO runs
on a single CPU core and enqueues one packet at a time
sequentially. If we follow the same paradigm on NPs, we
would select one core to perform the scheduling task and
leave the other cores conducting computation tasks. However,
this is not scalable because as the traffic volume increases,
the selected core should always provide the same throughput
as the rest of cores amount to. Now the challenge is to
develop parallel scheduling algorithms accordingly to prevent
any single core from becoming a bottleneck. Simply running
a scheduling function on each core is not enough. We must
guarantee that the additional scheduling mechanism does not
affect line rate performance. For example, if we have 50 cores
simultaneously processing packets with different priorities, the
overhead of strictly sorting those packets through complex
inter-core communication is unacceptable. We need to reduce
inter-core collaboration as much as possible and make the most
of processing operations stateless.
Challenge 2: Constrained buffer management and packet
queueing. Ideally, PRIO qdisc should be able to control
the sending orders of buffered packets. However, the way
network processors recirculates buffers is not customizable.
As illustrated in Figure 4, packets are first copied from the
receive (Rx) ring buffer to some fast memories near processing
cores (e.g., local memory), which accelerates manipulations
on packet headers. After processing, packets are copied to the
shared transmit (Tx) ring buffer and fed into multiple FIFO
queues in the traffic manager. This results in packets of all
classes mixed in the Tx buffer and treated equally upon egress.
Without scheduling, large flows of lower priority classes may
easily overwhelm small flows of higher priority ones. Since

there is no intermediate queues per traffic class, the challenge
is how to avoid congestion on egress by handling packets on
their way into Tx buffers.

D. Methodologies

To overcome the above challenges, FlowValve implements
parallel scheduling by plugging a specific scheduling function
into each core’s processing routine. Under the hood, this
function abstracts the Tx buffer (and hardware queues in the
traffic manager) as a FIFO queue and performs specialized tail
drop to avoid congestion. Unlike common tail drop, FlowValve
prejudges which packet would cause buffer overflow to its
belonged traffic class. Then it explicitly drops this packet in
advance. In this way, FlowValve assigns buffers conceptually.

In case of priority scheduling, two flows (named fhigh and
flow) compete for egress bandwidth. The scheduling function is
triggered after each packet arrives at a processing core. Now
the core needs to determine whether to discard this packet
from the global traffic status. For example, on a 10Gbps link,
assume that both flow and fhigh want to send traffic at 9Gbps.
Without scheduling, egress flow rates of fhigh and flow are
both 5Gbps (if their traffic patterns are the same). Because
packets of both flows fill the NIC receive buffer on host side
at the same speed, their ingress rates are the same. Without
interventions on the NIC, they egress bandwidth naturally
equals. However, priority scheduling desires that if fhigh sends
at 9Gbps, flow can only get 1Gbps bandwidth. Later as fhigh

decreases its sending rate, flow can accordingly occupy more
bandwidth. The difficulty is how to make each processing core,
at the time when holding packets of flow, get aware of rate
changes of fhigh to correctly forward or discard packets of flow.

Fortunately, modern network processors can perform accu-
rate rate estimation on the data plane, which helps scheduling
algorithms make runtime decisions. More specifically, many
processing cores (e.g., ≥ 50) can collaborate to estimate
flow rate with high sampling frequency. Besides, there are
also specific hardware instructions for efficient atomic updates
on flow counters/meters, eliminating considerable contention
overhead brought by using software locks. With runtime traffic
measurement, processing cores can first estimate an instant rate
of fhigh, called Rhigh. Then they can throttle flow to the rate of
(10Gbps - Rhigh), reserving enough room in the transmit buffers
for packets of fhigh. We present more detailed algorithms in
Section IV-C.

E. Interfaces

FlowValve can fully offload PRIO and HTB meanwhile
support qdisc chaining. It provides a shell command-line inter-
face, called fv, which inherits the corresponding tc command
options. For example, to specify the QoS policies in our
motivation example, part of the commands go as follows.

1 $ fv qdisc add dev eth0 root handle 1: prio
2 $ fv qdisc add dev eth0 parent 1:3 handle htb 30: htb
3 $...
4 $ fv class add dev eth0 parent 30: classid 30:1 htb rate 10gbit
5 $...
6 $ fv filter ...

IV. DESIGN

In this section, we first overview FlowValve workflow. Then,
we detail the design of scheduling functions, including key
data structures and algorithms. Next, we demonstrate how
these functions can be executed parallelly to distribute band-
width among active flows following their QoS requirements.
Finally, we analyse the accuracy of scheduling functions.

A. FlowValve Workflow

P
O
R
T

PCIe

FlowValve System ServiceSmartNIC Runtime

Core NShared Memory

Filter Rules

Labeling
Function

User QoS Policies

> fv qdisc ..
> fv class ..
> fv filter ..

Apps

Scheduling Function

Packet QoS Label

Scheduling Tree
Parameters

Buffer

Fig. 5: FlowValve workflow.

FlowValve consists of a system service on host and a
processing pipeline on SmartNICs, as shown in Figure 5.
We refer to the system service as the front end (i.e., the
orange dash line box) and the processing pipeline as the
back end (i.e., the blue dash line box). The front end takes
in user-specified QoS policies (i.e., fv command scripts),
which include qdiscs, hierarchy classes, and filter rules. Then,
it constructs a scheduling tree and populates configuration
parameters and filter rules into the SmartNIC shared memory
(i.e., the red arrow). This makes all the NIC processing cores
can access the data. An application packet first matches filter
rules to be classified (i.e., the green arrow). Then the matched
packet gets its QoS labels, which indicate its belonged traffic
classes and borrowing permissions. These labels are stored
as metadata fields within the packet buffer without requiring
additional header space. Later, the scheduling function extracts
the QoS labels and updates the scheduling tree accordingly.
Upon finishing update, a forwarding decision is made to either
drop this packet or transmit it to the wire (i.e., the blue arrow).

Figure 6 illustrates the scheduling tree update procedure in
our motivation example. We simplify the QoS requirements
compared to the original version for ease of discussion.
FlowValve uses token buckets to enforce rate control. The core
idea of the scheduling function is to decide token fill rates

for various buckets in each short time interval. For example,
the NC flow has a strictly higher priority to consume any
amount of available tokens. FlowValve simulates this behavior
by measuring NC’s token consumption rate and subtracts it
from the ceiling rate to get the rest available token rate for
the other traffic classes (i.e., S1’s subclasses). This ensures
that the bandwidth requirement of NC is always first satisfied.
Similarly, weighted scheduling between classes WS and S2 is
implemented by proportionally updating their token rates at
each time when replenishing token buckets. In case of a class
lacking tokens, FlowValve supports borrowing to maximize
bandwidth utilization. The borrowing result depends on user
configurations and runtime flow status. For example, in Fig-
ure 6(d), the solid shadow area indicates the guaranteed token
consumption rate per traffic class. However, ML demands
more than its committed share. So it borrows tokens from WS
and KVS, which is allowed when tokens of these two classes
are unused at the moment. The slash shadow areas illustrate
the borrowed parts.

As shown in Figure 5, FlowValve offloads classifying in the
labeling function and scheduling in the scheduling function.
The labeling function essentially performs table lookups to
match packets against filter rules. These operations are easily
implemented with SmartNIC SDK. Therefore, we focus on
discussing the idea and algorithms of the scheduling function.
Before that, we briefly introduce the scheduling tree data
structure.

B. Scheduling Trees

The scheduling tree describes class relationships (e.g., par-
ent or sibling) and bandwidth distribution policies. Each tree
node represents a traffic class and contains necessary operating
parameters, e.g., token bucket configurations. The leaf class
uses tokens to limit flow rate, while the root or interior class
uses tokens to measure flow rate. As shown in Figure 5, QoS
labels record the operations on the scheduling tree. There are
two parts of a QoS label. The first part is the hierarchy class
label, which records the sequence of traffic classes a packet
belongs to. For example, as Figure 6(c) illustrates, packets of
the ML service should have the hierarchy class label of S0
→ S1 → S2 → ML, which directs the scheduling function to
update flow status of node S0, S1, S2 and ML correspondingly.
The second part is the borrowing class label, which indicates
borrowing permissions of this flow. For example, the ML class
is supposed to borrow bandwidth from classes WS and KVS.

C. Scheduling Functions

In support of NP architecture, our scheduling functions must
supplement two lacking features of kernel qdiscs.
Feature 1: Parallel execution. There are two-fold advantages.
One is to guarantee the offloading effectiveness. The other is to
break the bounding between scheduling policies and specific
queues. For example, the kernel HTB qdisc traverses tree
nodes to update class info per packet transmission. According
to its algorithm, we need a global lock to guarantee consistent
updating of the shared scheduling tree on network processors

(a) (b) (c) (d)

GREEN
FORWARD

S0

NC S1

WS S2

ML KVS

PKTNC PKTML PKTML

ML KVS

S0

NC S1

WS S2

BORROW
SUCCEED

RED
BORROW

S0

NC S1

WS S2

ML KVS

S0

NC S1

WS S2

ML KVS

Rceil = B RNC = B*1/4 RML = B*3/4

w:1 w:2

w:1 w:1

prior:1 prior:2

Fig. 6: Scheduling tree update procedure of the motivation example (Section II). (a) Scheduling tree structure. NC is strictly
prior. WS, ML, and KVS proportionally share the rest of bandwidth. Their weights are annotated on the edges. (b) The flow
of NC occupies one-fourth of the ceiling bandwidth. All its packets are marked green and forwarded straightly. (c) The flow
rate of ML is three-fourths of the ceiling bandwidth, which exceeds its guaranteed one-fourth share. Therefore, packets of
excess parts are marked red and attempt to borrow bandwidth from other idle classes. (d) Fortunately, they borrow enough
bandwidth from the inactive WS and KVS classes. So the packets are marked green again and successfully transmitted to the
wire without the worry of causing egress congestion.

(Figure 7-Á). Unfortunately, this turns packet forwarding
single-threaded. Because only one thread enters the critical
updating code section while other threads are forced to wait.
The network processor loses its parallel advantage, therefore
making the offloading ineffective. Besides, HTB only supports
a single queue. So that traffic from multiple tenants must
first be aggregated before being scheduled. That is due to
HTB queues packets before scheduling. In contrast, FlowValve
schedules packets before queueing (Feature 2). So that Flow-
Valve does not care how many input queues of the incoming
traffic. The upper bound of queue numbers is simply restricted
by the maximum number of virtual ports.
Feature 2: Predictable buffering. On-NIC hardware queues
do not support user management (Section III-C). Once a
packet resides in the buffer, it reserves a small fraction of
the future bandwidth. The only way for a custom control is
to predict which packet should arrive at the buffer so that
its desired bandwidth is appropriately reserved. Fortunately,
this prediction can be made through a combination of rate
limiting and sharing procedures. The core idea is to continue
estimating each flow’s instant rate to make up for the lack of
queueing information, which is essential in making scheduling
decisions.

Now that it is necessary to re-implement algorithms in
combination of hierarchical rate limiting and sharing on NPs,
we break down the general procedure into three subprocedures.
For a packet P , the scheduling function needs to sequentially
update all its relevant traffic classes. For example, packet NC1
needs to update classes S0 and NC.
Subprocedure 1: Hierarchical rate-limiting. As shown in
Figure 7-À, the update procedure without global synchroniza-
tion on NPs is invalid. The final status of class S0 is inaccurate
due to multi-core data races. However, a valid yet sequential
update procedure easily causes low throughput (Figure 7-Á).
An ideal solution is the parallel scenario (Figure 7-Â), where
packets NC1 and ML1 can simultaneously update classes NC
and S0. Note this scenario is not lock-free. For example, packet

Time

Pkt NC1
(core 1)

S0 NC S0 S1 S2 ML

Pkt ML1
(core 2)

Pkt NC2
(core 3)

S0 NC

S0 NC
S0 S1 S2 ML

S0 NC

Sequential

➁

Parallel

➂

T2T1

Invalid

➀
Pkt NC1 (core 1)S0 NC

S0 S1 S2 ML
S0 NC Pkt NC2 (core 3)

Pkt ML1 (core 2)

Fig. 7: Different scheduling tree update procedures.

NC2 must wait ML1 to release the lock before it can update
class S0. We guard the update code of each class with locks.
We prove that our design can achieve hierarchical rate-limiting
on NPs. Figure 8 illustrates the rate-limiting procedure for a
single traffic class. Later, we extend this basic scene to any
number of traffic classes encoded by arbitrary scheduling trees.

meter
finish update ⧍t

Time

Bucket replenish

Bucket shrink

trigger update
➀ ➀

➁ ➂ ➃ ➄

lock unlock

⧍T

meter meter meter meter
...

lock unlock

Fig. 8: Single class rate-limiting procedure.

Rate-limiting in Figure 8 is performed by the meter and
update subprocedures. The meter implements rfc2697 [27].
It marks every arrival packet P with a color indicator σ.
This color result reflects the relation between an approval

bandwidth b and the instant flow rate γ, where

σ =

{
red, if γ > b,

green, otherwise.
(1)

More specifically, each class is maintaining a token bucket.
The meter function checks the number of tokens left in
the bucket. If there are enough tokens, packets are marked
green (Figure 8-ÀÁÂÃ) and the token number is reduced.
Otherwise, packets are marked red (Figure 8-Ä) and the
token number is unchanged. The token bucket is replenished
regularly by the update subprocedure, which is also triggered
by packet arrival events (Figure 8-À). Note that the update
function is not executed on a per-packet basis. In a multi-
core environment, only one core executes this procedure at a
time. The other cores which process the same flow but do not
grab the lock only execute the meter function. This does not
compromise the validity. Because inside the update procedure,
the supplement token number is calculated by multiplying the
update interval ∆T (annotated in Figure 8) and token rate θ.
The update interval is calculated from the recorded timestamps
between the current and previous stages. While the token
rate is either converted from a user-specified bandwidth or
calculated at runtime.

The relation between a user-specified bandwidth b (bits/s)
and the corresponding token rate θ (bits/cycle) of a specific
class C is linear. Assume the frequency of the processing core
is f . So that bC ×∆T = θC ×∆T × f , which derives

θC =
bC
f
. (2)

For example, in Figure 6(a), the token rate of root class S0 is
θS0

=
BS0

f . Runtime calculations happen when user policies
specify priorities, weights or other conditions in bandwidth
distributions.

1) Priority: Priority scheduling assigns the unsatisfied prior
class as much bandwidth as it requires. While other less
prior classes only get the residual bandwidth. The bandwidth
requirement of a specific class C is linearly reflected on its
token consumption rate ΓC . Let LP denote the token number
consumed by forwarding packet P . Then ΓC can be calculated
by counting the amount of tokens consumed by forwarding
packets of class C during a short time interval, which is

ΓC =

∑
LP

∆T
, P ∈ C. (3)

The interval ∆T is exactly the aforementioned update interval.
So that ΓC is evaluated at each time when class C’s token
bucket gets replenished. This makes ΓC reflect C’s bandwidth
requirement timely. The rest available token rate is

θrest = θparent − ΓC (4)

For example, in Figure 6(a), class NC is prior so we set its
token rate to θS0

. NC’s token consumption rate is ΓNC =∑
LP

∆T , P ∈ NC. Class S1 gets the rest token rate except NC’s
consumption, which is θS1

= θS0
− ΓNC .

2) Weight: Weighted scheduling divides the token rate of
parent classes to their child classes proportionally. For any
parent class with N(N ≥ 1) children, let w denote the child’s
weight, the token rate of the i–th child class is

θchildi = θparent × wi,

N∑
i=1

wi = 1. (5)

For example, in Figure 6(a), the token rate of WS and S2 is
calculated as θWS = θS1× 1

3 and θS2 = θS1× 2
3 , respectively.

3) Other conditions: More complex rate control conditions
can be defined similarly. For example, in Figure 6(a), the
user may also want to restrict NC’s ceiling bandwidth to 3

4 B
to prevent the potential starvation of S1. This changes the
previous token rate of NC from θS0

to 3
4 θS0

. The calculation
of S1’s token rate also changes to θS1

= ΓNC < 3
4 θS0

? θS0
−

ΓNC : 1
4 θS0

. We abstract various condition templates and
record them in the scheduling function. So that appropriate
calculations are selected for concrete user policies.

Single class rate-limiting can be performed with high
precision (i.e., Figure 8). The key point of class hierarchy
extension is to feed desired token rates for specific classes
(e.g., Equation 2, 4, 5). Methods to determine token rates at
different tree levels are consistent. However, the convergence
speeds may differ due to the asynchronous update procedures
happening on different processing cores (i.e., Figure 7). We
further analyse the accuracy of the scheduling function in
section IV-D.
Subprocedure 2: Bandwidth sharing. Rate-limiting effec-
tively prevents undesired bandwidth occupancy under se-
vere traffic congestion. However, it also prohibits bandwidth
sharing due to the simple token-based forwarding behavior.
Continue on the previous example in Figure 6(a), class NC
cannot use more than 3

4 B bandwidth even if S1’s reservation is
idle. One way to break through this limitation is to implement
a complementary borrowing mechanism.

Bandwidth borrowing needs synchronization. A class is only
supposed to lend out bandwidth when it has residual part.
However, the bandwidth utilization can vary all the time. It is
hard for borrowers to find appropriate lenders due to the lack
of buffering. Our solution is simple. We explicitly provide
indications of bandwidth usage through shadow buckets. The
shadow bucket contains unconsumed tokens of a regular traffic
class at each update epoch. We extend the idea of Equation 4
to calculate the lendable token rate as

θlendable = θC − ΓC . (6)

In contrast to Equation 4, where the rest token rate (i.e., θrest)
is assigned to C’s less prior sibling classes, the lendable token
rate (i.e., θlendable) in Equation 6 can be shared by any eligible
starvation class. The scheduling function identifies eligible
lenders from the QoS borrowing label (Section IV-B). Then it
sequentially queries the shadow bucket of each lender class.
The borrowing procedure is simply another practice of rate-
limiting process as shown in Figure 8. Packets are forwarded
only if they get enough tokens either from their original class

bucket or one of shadow buckets of lender classes. Otherwise,
they would be dropped due to inadequate bandwidth.

Fig. 9: Interior classes bandwidth sharing example.

Our borrowing procedure supports fine-grained traffic con-
trol. Such requirements frequently occur in network isolation
scenarios between multiple tenants. Bandwidth sharing is
preferent among interior classes by default. Continue on the
example in Figure 6, at the time when KVS is idle while WS
and ML are hungry. Since ML and KVS are deployed by the
same tenant (i.e., interior classes), bandwidth sharing between
them should be prior. This requires that the administrator sets
S2 to the borrowing class label of WS. She then sets S2 and
KVS to the label of ML. Figure 9 illustrates the relation of
token rates between ML and KVS. Note that ML has class
S2 on its scheduling tree path. So that its flow rate is fully
reflected on S2’s token consumption rate (i.e., ΓS2

== ΓML).
Then the lendable token rate of S2 (i.e., θlendable = θS2−ΓS2)
already subtracts the ML-occupied lendable share of KVS (i.e.,
∆Γ). The more ML occupies, the less WS can borrow. If the
administrator changes WS’s label from S2 to KVS and ML.
Then WS and ML become equal in sharing KVS’s reservation
bandwidth because WS can directly query the shadow bucket
of KVS as ML does.
Subprocedure 3: Expired status removal. Traffic class up-
date is driven by packet arrival events. However, this may lead
to some expired flow status left on the scheduling tree, which
easily misleads the behavior of subsequent traffic classes.
For example, when calculating token rates, results become
expired after the processing of the last several packets within
a flow. We solve this problem by adding timestamps in all
kinds of shared status. Upon usage, the recorded timestamp
is compared to the current one. If the interval is larger than
a predefined threshold, we identify the status as expired. We
restore expired status to its initial value. These operations are
encapsulated into the update procedure.
Algorithm. Algorithm 1 details operations in the scheduling
function. It first sequentially refreshes token buckets along
the packet’s scheduling tree path (Lines 1-4). This step also
evaluates per class’s token rate and lendable token rate.
Meanwhile, the consumed token counter of each class records
per packet passing (Line 5). At leaf class, the meter function
throttles traffic rate. The green color result indicates sufficient
bandwidth and passing approval (Lines 6-8). Otherwise, the
packet undergoes an additional borrowing procedure. The
scheduling function again sequentially queries the shadow
bucket of lender classes specified in the borrowing label (Lines
9-13). The packet passes if there is residual bandwidth (Line
14-15). Otherwise, the final decision is drop (Line 16).

Algorithm 1: Scheduling Function
Input: Packet QoS Label M, Packet P, Scheduling Tree Tree
Output: Forwarding decision DROP/FORWARD

1 for each class c in M.hierarchy_class_label do
2 if grap_lock then
3 update (Tree[c].θ, Tree[c].Bucket);
4 release_lock;

5 count (Tree[c].Consume_Counter, P);

6 color ← meter (Tree[c].Bucket, P);
7 if color == GREEN then
8 return FORWARD;

9 for each class c in M.borrowing_class_label do
10 if grap_lock then
11 update (Tree[c].θlendable, Tree[c].Shadow_Bucket);
12 release_lock;

13 color ← meter (Tree[c].Shadow_Bucket, P);
14 if color == GREEN then
15 return FORWARD;

16 return DROP;

D. Scheduling Accuracy

prior:1

S0

A0 S1

A1 S2

A2 A3

prior:2

prior:3 Time

A0
A1

A2

➀
➁

➂

Fig. 10: Propagation delay of asynchronous update procedures.

Generally, the scheduling accuracy depends on the preci-
sion of single class rate-limiting and the impact of multi-
class hierarchy. Single class rate-limiting on NPs is accurate,
which mainly benefits from their specialized hardware design.
Numeric instructions can execute on the transactional memory,
which provides guaranteed consistency and high efficiency.
For example, our meter function is essentially a wrapper
around the atomic meter instruction [28]. Similar examples
include various counters used in our scheduling functions.
Moreover, we guard complex multiplication and division with
software locks to avoid inaccuracy caused by data races. So
that the main error of scheduling function would exist in multi-
class interoperation, especially the propagation delay of token
rate fluctuation.

Figure 10 illustrates a priority scheduling case. The prior
sequence is A0, A1 and A2. The flow rate change of class
A0 is evaluated and written back to the shared memory at the
end of update stage À. So that the latest info of A0 can be
only acquired by A1 at the beginning of stage Á. Then, A1
adjusts its token rate accordingly and replenishes its bucket
with this new rate. Changes of A1 finally take effect at the
end of stage Á when the new rate and token number are
recorded in the shared memory. This produces a propagation
delay of ∆DA1

. Similarly, the adjustment of A2 takes effect
at the end of stage Â with the delay of ∆DA2 . Note that

the meter operation is simultaneously executing during each
update stage (Figure 8). This results in class A1 and A2
throttle at original flow rates during their delay intervals. The
delay time is affected by the update code execution speed
and tree depth of the class. Fortunately, modern NPs operate
at high frequency (e.g., 1.2GHz), making each update stage
finish within tens of milliseconds. In the next section, we
demonstrate that FlowValve offers good rate conformance.

V. EVALUATION

We implement the front end of FlowValve prototype in
Python and build its back end on a Netronome Agilio CX
40GbE SmartNIC [6]. The backend processing pipeline is
developed in P4 [29] and the scheduling function is written
in Micro-C [30]. The P4 and Micro-C programs are linked
together to run on the SmartNIC. The Netronome SmartNIC
inserts in a PCIe Gen 3x8 slot. There is also an Intel X710
Quad Port 10GbE SFP+ Ethernet NIC. These two cards are
wire connected. We use the Netronome NIC to send and
schedule packets, while the Intel NIC receives and responses.
Other settings of the end-host include 32GB memory and an
8-Core 2.3GHz CPU. The OS is CentOS 7. We choose DPDK
driver because it provides high throughput, which is suitable
for stress testing. There is also kernel compatible driver which
FlowValve can run on.
Methodologies. Our evaluation aims to demonstrate the per-
formance gain brought by offloading scheduling functions.
Specifically, we compare FlowValve with two well-known
and widely-adopted software schedulers, i.e., Linux HTB and
DPDK QoS Scheduler. For tests on HTB, we use iperf3 to
saturate network link and netperf to measure one-way latency.
As for tests on FlowValve and DPDK QoS Scheduler, we
build a TCP performance analyzing tool coupled with user
space mTCP [31] stack. We first run network-bound testing
applications with different QoS settings to observe the be-
havior of HTB, FlowValve, and DPDK QoS Scheduler. Then,
we compare the metrics of maximum packet throughput, one-
way latency, and CPU utilization to profile their scheduling
capabilities.
Results. FlowValve can accurately enforce QoS policies while
driving TCP traffic at 40Gbps, which contributes to freeing
two CPU cores. It can further save more CPU resources as
the packet rate increases. Although FlowValve has a little
higher one-way delay at 40Gbps, it significantly lowers delay
variation, making the egress traffic pattern more smooth and
predictable.

A. QoS Policy Enforcement

We demonstrate that our FlowValve prototype can enforce
QoS policies accurately and efficiently. We perform experi-
ments with the following settings. There are four active pro-
cesses (App0-App3). Each process runs on a separated CPU
core and sends traffic to the SmartNIC from an isolated virtual
function. The virtual function associated interface has one
transmit queue and one receive queue. This setting prevents
interventions between the traffic of different processes.

Figure 11 illustrates the throughput achieved by different
apps over time. In the first experiment, we replace HTB (and
PRIO) in Figure 3 with FlowValve and enforce the same QoS
policies to the traffic of four applications. Each application
maintains a single TCP connection. Figure 11(a) shows that
FlowValve outperforms HTB in the following aspects. First,
FlowValve better prioritizes traffic of NC before time 15s
by giving it all the available bandwidth. Second, FlowValve
accurately distributes bandwidth among active traffic classes
according to their weight and priority settings from time 15s
to 30s. However, HTB ignores the priority between the KVS
and ML classes to let them equally share the bandwidth. Third,
FlowValve limits the total traffic rate to nearly 10Gbps all the
way, while HTB breaks this limitation when the traffic of the
KVS class stops at time 30s. This indicates high accuracy of
flow rate estimation and token distribution algorithms.

Next, we scale the traffic volume to Netronome’s line rate
and increase the TCP connection number of each process from
one to four. This can make the traffic rate of one app add up
to 40Gbps because the receiver side has four 10GbE ports. We
demonstrate that FlowValve can still enforce network policies
with two kinds of QoS settings, fair queueing and weighted
fair queueing. Figure 11(b) shows that FlowValve precisely
distributes bandwidth among active flows and drives line rate.
Further, we dynamically adjust TCP connection numbers in
the range of 4 to 256 per process and ensure that different
processes maintain different numbers of connections. The
results remain the same as Figure 11(b). In the experiment
of weighted fair queueing, as shown in Figure 11(c), we set
policies as shown in Figure 12. The weight value of each
traffic class is recorded in the third column. For example,
the aggregated bandwidth of S1’s children should amount to
App0 because of their equal weight. So we can observe that
the appearance of App2’s traffic at time 20s does not affect
the traffic of App0. However, when App0 stops sending at
time 30s, the other three classes equally share link bandwidth
because we do not enforce weighted borrowing. Similarly, we
randomize the TCP connection number of each traffic class.
The overall results change little compared with Figure 11(c).
In contrast to HTB, DPDK QoS Scheduler also succeeds
in scheduling traffic at 40Gbps in our tests. So we further
compare more metrics to profile their capabilities.

B. Offloading Effectiveness

We evaluate the benefit of offloading scheduling functions
by comparing the maximum throughput and one-way delay of
different packet schedulers. For both experiments, we omit
tests on HTB when the total bandwidth exceeds 10Gbps
because HTB cannot enforce network policies correctly on
these high speed links. In the first experiment, we set net-
work policies the same as the fair queueing experiment in
Section V-A and inject fixed-length packets at full speed.
Figure 13 compares the maximum throughput of FlowValve
and DPDK QoS Scheduler over varying packet sizes. Flow-
Valve can achieve higher throughput in all cases meanwhile
saving CPU resources. In contrast, DPDK QoS Scheduler

 0

 4

 8

 12

 0 10 20 30 40 50 60

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Time (s)

NC WS KVS ML

(a)

 0
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40

 0 5 10 15 20 25 30 35

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Time (s)

App0 App1 App2 App3

(b)

 0
 4
 8

 12
 16
 20
 24
 28
 32
 36
 40

 0 10 20 30 40 50

T
h
ro

u
g
h
p
u
t

(G
b
p
s)

Time (s)

App0 App1 App2 App3

(c)

Fig. 11: TCP throughput on 10Gbps and 40Gbps network links. (a) Motivation example. (b) 40Gbps fair queueing. (c) 40Gbps
weighted fair queueing with scheduling policies illustrated in Figure 12.

App0

Class Parent class Sibling class Weight

S0 S1 App0 : S1 = 1 : 1

App1 S1 S2 App1 : S2 = 1 : 1

App2 S2 App3 App2 : App3 = 1 : 1

Fig. 12: Weighted scheduling policies of experiment apps.

Packet Size
(Byte)

FlowValve DPDK QoS Scheduler

Maximum
Throughput (Mpps)

Maximum
Throughput (Mpps)

Scheduling Core
Number

1518 3.23
2.25 1

3.24 2

1024

64

4.75 4.49 2

19.69 9.06 4

Fig. 13: The maximum throughput of evaluated schedulers
when enforcing fair queueing.

reaches performance expectations at the expense of consuming
CPU cores. This becomes more obvious as the packet rate
increases. For example, DPDK QoS Scheduler takes one core
to schedule packets of 1518B at 2.25 Mpps but four cores to
schedule packets of 64B at 9.06Mpps. When all connections
only exchange 64B small packets, FlowValve can schedule
packets at 19.69Mpps, which comes up to using eight CPU
cores by DPDK QoS Scheduler. We further dig into the
implementation of DPDK hierarchical scheduler block to find
the reason for its performance degradation. The main problem
is the high complexity for DPDK scheduler to make the
queue operations thread safe, especially in terms of multi-core

Bandwidth
(Gbps)

Scheduler
One-way Delay (us)

Mean Standard Deviation

10

HTB 36.74 348.25

30.05 0.30

40

DPDK QoS 50.51 41.06

FlowValve 162.93 (161.01) 0.30 (0.11)

FlowValve

DPDK QoS 70.38 83.29

Fig. 14: One-way delay of evaluated schedulers when enforc-
ing fair queueing.

scaling requirements. The impact of using locking primitives
(e.g., spinlocks) is significant. Also data structures sharing to
external cores easily cause high miss rate of cache lines [24].
These all make the multi-core cooperation of DPDK QoS
Scheduler less effective.

Figure 14 compares the one-way delay of different packet
schedulers. When the bandwidth is limited to 10Gbps, Flow-
Valve causes the lowest delay in packet transmission. However,
as the bandwidth increases to 40Gbps, the delay increases 4x.
We consider this is mainly caused by some other necessary
processings on the SmartNIC. Because when we disable
FlowValve to simply forward packets at 40Gbps, the delay
is still as high as 161.01 microseconds. This also indicates
that FlowValve is not a processing bottleneck. Surprisingly,
FlowValve almost causes no variations in delay. We attribute
this to the efficient algorithms performed by our scheduling
function. Since the whole pipeline suffers from a bottleneck
elsewhere that we could not change, the delay becomes stable
and predictable. This makes FlowValve suitable for scheduling
jitter-sensitive workloads, e.g., the video traffic.

VI. DISCUSSION

Higher Line rate. The current FlowValve prototype is im-
plemented on a 40GbE Netronome SmartNIC. However, we
demonstrate that FlowValve is capable of processing packets
as fast as at near 20Mpps (Figure 13). Saturating 100Gbps
link with 1500B packets only needs a rate of 8.33Mpps,
which indicates the potential of porting FlowValve to 100GbE
SmartNICs to accommodate bandwidth growth in data center
networks. Besides, a higher rate platform usually has more
processing power. For example, as the number of micro-
engines or the frequency of single micro-engine grows on the
100GbE cards [32], the peak packet processing rate is expected
to improve as well.
Other SmartNICs. Netronome SmartNICs are typical and
popular multi-core SoC SmartNICs. Offloading scheduling on
similar platforms may borrow some insights from FlowValve’s
design. However, the programmer still needs considerable ef-
forts to tailor the implementation for specific devices. Because
different devices adapt different programming languages and
models. As for another distinct product category, the FPGA-
based platforms, we do not expect FlowValve to be worthy of
reference due to the huge gap in architectural differences.

VII. RELATED WORK

Programmable scheduling primitives. Part of the existing
work focuses on developing new programmable scheduling
primitives. Once these primitives are integrated into hardware,
a range of algorithms can be expressed accordingly. This
brings more flexibility into customizing scheduling algorithms.
For example, a PIFO-based scheduler can program hierarchical
work-conserving (e.g., Weighted Fair Queueing) and non-
work-conserving (e.g., Token Bucket Filtering) algorithms at
line rate [33]. The PIEO-based scheduler further overcomes
PIFO’s limitation on dequeueing by supplementing filters
to express a wider range of algorithms [34]. Programmable
Calendar Queues remove the limitation of finite priority levels
in today’s switch by performing dynamic escalation of packet
priorities. The basic calendar queue abstraction is implemented
by managing priority queues in the hardware traffic manager
with primitive instructions (e.g., pause/resume queues) [25].
In contrast to these works, FlowValve does not aim to provide
another new primitive. Instead, it explores the feasibility of
offloading existing software algorithms onto SmartNICs with
inherent queueing systems.
Efficient packet scheduling. Another chain of work aims
to develop efficient and practical scheduling systems with
software optimizations or specialized hardware. For example,
Eiffel implements efficient packet ranking based on the Find
First Set CPU instruction [35]. Carousel scales end-host traffic
shaping significantly by using efficient timestamps and lock-
free coordination as well as timely freeing resources in upper
network layers [4]. However, finding efficient implementations
is challenging. Recent proposals demonstrate that the upcom-
ing programmable switches can also be utilized to offload
scheduling functions. For example, SP-PIFO closely approx-
imates the behavior of PIFO using strict-priority queues on
Barefoot Tofino [36]. AFQ emulates the bit-by-bit round-robin
algorithm to approximate fairness queueing at line rate [37].
HCSFQ further emulates two-layer hierarchy fair queueing
with a single FIFO queue [38]. Compared with programmable
switches, SmartNICs are more complicated offloading targets.
An inappropriate design or implementation may even fail to
achieve line rate performance. FlowValve carefully reduces
locking overhead to conduct parallel scheduling on multi-core
NPs. In contrast, works on programmable switches do not
face this challenge because programmable switches deploy
sequential pipelines. Similarly, Loom [13] presents a multi-
queue NIC design coupled with a PIFO-based scheduler. We
present detailed comparison with Loom in Figure 15.

FlowValve Loom

Programming Target Multi-core Network Processor Sequential Match-Action Table
Pipeline

Scheduling Primitives Hierarchical Token Buckets Push-In-First-Out queues

Ease of Deployment Off-the-shell products Prototype

Fig. 15: Comparison with Loom.

VIII. CONCLUSION

We present FlowValve, the first parallel packet scheduler
for NP-based SmartNICs that offloads critical functions of
Linux traffic control. FlowValve takes advantage of multi-core
parallelism on NPs to run classifying and scheduling functions
on many processing cores simultaneously. Evaluations on a
real SmartNIC show that FlowVlave offers higher throughput
than non-offloaded schedulers and substantially reduces CPU
and memory burdens on end-hosts. Our work takes the first
step to offload stateful scheduling functions in existing Smart-
NIC products, and we hope it can bring more interest to this
promising direction.

IX. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful
comments and suggestions. This work was supported by the
National Key Research and Development Program of China
under Grant No. 2018YFB1800201; the National Natural
Science Foundation of China under Grant Nos. 62072091,
62032013 and 61872073; the LiaoNing Revitalization Talents
Program under Grant No. XLYC1902010.

REFERENCES

[1] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, A. Greenberg,
and C. Kim, “Eyeq: Practical network performance isolation at the
edge,” in 10th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 13), 2013, pp. 297–311.

[2] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “Timely: Rtt-based
congestion control for the datacenter,” ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4, pp. 537–550, 2015.

[3] G. Kumar, N. Dukkipati, K. Jang, H. M. Wassel, X. Wu, B. Montazeri,
Y. Wang, K. Springborn, C. Alfeld, M. Ryan et al., “Swift: Delay
is simple and effective for congestion control in the datacenter,” in
Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies, architectures,
and protocols for computer communication, 2020, pp. 514–528.

[4] A. Saeed, N. Dukkipati, V. Valancius, V. The Lam, C. Contavalli,
and A. Vahdat, “Carousel: Scalable traffic shaping at end hosts,” in
Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, 2017, pp. 404–417.

[5] H. Eran, L. Zeno, M. Tork, G. Malka, and M. Silberstein, “{NICA}: An
infrastructure for inline acceleration of network applications,” in 2019
{USENIX} Annual Technical Conference ({USENIX}{ATC} 19), 2019,
pp. 345–362.

[6] Netronome, Agilio CX SmartNIC (1x40GbE), 2022. [Online]. Available:
https://open-nfp.org/resources/

[7] Fungible, The Fungible Data Processing Unit., 2022. [Online].
Available: https://www.fungible.com/product/dpu-platform/

[8] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung et al.,
“Azure accelerated networking: Smartnics in the public cloud,” in 15th
{USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 18), 2018, pp. 51–66.

[9] Y. Moon, S. Lee, M. A. Jamshed, and K. Park, “Acceltcp: Acceler-
ating network applications with stateful {TCP} offloading,” in 17th
{USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 20), 2020, pp. 77–92.

[10] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and
L. Zhang, “Kv-direct: High-performance in-memory key-value store
with programmable nic,” in Proceedings of the 26th Symposium on
Operating Systems Principles, 2017, pp. 137–152.

[11] J. Hypolite, J. Sonchack, S. Hershkop, N. Dautenhahn, A. DeHon,
and J. M. Smith, “Deepmatch: practical deep packet inspection in
the data plane using network processors,” in Proceedings of the 16th
International Conference on emerging Networking EXperiments and
Technologies, 2020, pp. 336–350.

[12] M. T. Arashloo, A. Lavrov, M. Ghobadi, J. Rexford, D. Walker, and
D. Wentzlaff, “Enabling programmable transport protocols in high-speed
nics,” in 17th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 20), 2020, pp. 93–109.

[13] B. Stephens, A. Akella, and M. Swift, “Loom: Flexible and efficient
{NIC} packet scheduling,” in 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19), 2019, pp. 33–46.

[14] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani, V. Br-
uschi, D. Sanvito, G. Siracusano, A. Capone, M. Honda et al., “Flow-
blaze: Stateful packet processing in hardware,” in 16th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
19), 2019, pp. 531–548.

[15] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and
implementation of open vswitch,” in 12th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 15), 2015, pp.
117–130.

[16] M. Hedayati, K. Shen, M. L. Scott, and M. Marty, “Multi-queue
fair queuing,” in 2019 {USENIX} Annual Technical Conference
({USENIX}{ATC} 19), 2019, pp. 301–314.

[17] B. Stephens, A. Singhvi, A. Akella, and M. Swift, “Titan: Fair packet
scheduling for commodity multiqueue nics,” in 2017 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 17), 2017, pp. 431–444.

[18] Netronome, Virtual Switch Acceleration with OVS-TC and Agilio 40GbE
SmartNICs, 2018. [Online]. Available: http://www.netronome.com

[19] B. Hubert et al., “Linux advanced routing & traffic control howto,”
setembro de, 2002.

[20] Tc-prio, 2001. [Online]. Available: https://man7.org/linux/man-
pages/man8/tc-prio.8.html

[21] M. Devera and D. Cohen, HTB Linux queuing discipline manual - user
guide, 2002. [Online]. Available: http://luxik.cdi.cz/ devik/qos/htb/man-
ual/userg.htm

[22] “FlowValve code repository,” https://github.com/Haers/FlowValve.
[23] J. D. Brouer, “Network stack challenges at increasing speeds,” in

Proceedings of the Linux Conference, Auckland, New Zealand, 2015,
pp. 12–16.

[24] I. Corporation, Quality of Service (QoS) Framework, 2021. [Online].
Available: https://doc.dpdk.org/guides/prog_guide/qos_framework.html

[25] N. K. Sharma, C. Zhao, M. Liu, P. G. Kannan, C. Kim, A. Krishna-
[35] A. Saeed, Y. Zhao, N. Dukkipati, E. Zegura, M. Ammar, K. Harras, and

A. Vahdat, “Eiffel: Efficient and flexible software packet scheduling,”
in 16th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 19), 2019, pp. 17–32.

murthy, and A. Sivaraman, “Programmable calendar queues for high-
speed packet scheduling,” in 17th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 20), 2020, pp. 685–699.

[26] A. Kumar, S. Jain, U. Naik, A. Raghuraman, N. Kasinadhuni, E. C.
Zermeno, C. S. Gunn, J. Ai, B. Carlin, M. Amarandei-Stavila et al.,
“Bwe: Flexible, hierarchical bandwidth allocation for wan distributed
computing,” in Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, 2015, pp. 1–14.

[27] J. Heinanen and R. Guerin, “Rfc2697: a single rate three color marker,”
1999.

[28] S. G. J, “Transactional memory that performs an atomic metering
command,” U.S. Patent 8 775 686, Jun. 7, 2014.

[29] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[30] Netronome, Packet wire app in Micro-C, 2021. [Online]. Available:
https://open-nfp.org/the-classroom/

[31] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han, and
K. Park, “mtcp: a highly scalable user-level {TCP} stack for multicore
systems,” in 11th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 14), 2014, pp. 489–502.

[32] Netronome, Agilio LX SmartNIC (1x100GbE), 2022. [Online]. Available:
https://www.netronome.com/products/agilio-lx/

[33] A. Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang,
A. Agrawal, H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown,
“Programmable packet scheduling at line rate,” in Proceedings of the
2016 ACM SIGCOMM Conference, 2016, pp. 44–57.

[34] V. Shrivastav, “Fast, scalable, and programmable packet scheduler in
hardware,” in Proceedings of the ACM Special Interest Group on Data
Communication, 2019, pp. 367–379.

[36] A. G. Alcoz, A. Dietmüller, and L. Vanbever, “Sp-pifo: approximat-
ing push-in first-out behaviors using strict-priority queues,” in 17th
{USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 20), 2020, pp. 59–76.

[37] N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy, “Approx-
imating fair queueing on reconfigurable switches,” in 15th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI}
18), 2018, pp. 1–16.

[38] Z. Yu, J. Wu, V. Braverman, I. Stoica, and X. Jin, “Twenty years after:
Hierarchical core-stateless fair queueing.” in NSDI, 2021, pp. 29–45.

