
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. YY, MONTH 2022 1

RuleOut Forwarding Anomalies for SDN
Shaoke Xi, Student Member, IEEE, Kai Bu, Member, IEEE, Wensen Mao, Xiaoyu Zhang,

Kui Ren, Fellow, IEEE, Xinxin Ren

Abstract—Reliable Software-Defined Networking (SDN) should
mitigate forwarding anomalies due to cross-plane rule incon-
sistencies. Most existing countermeasures either inject probe
packets to infer forwarding correctness or collect packet traces
to detect forwarding anomalies. They, however, cannot detect
or filter forwarding anomalies for production packets in real
time. In this paper, we propose RuleOut as the first attempt
to automatically throttle SDN forwarding anomalies. It disam-
biguates dependent rules via augmenting their matching fields
with unique tags. Leveraging source routing, we further bind
each packet with the tag sequence corresponding to rules the
packet should match. RuleOut thus renders each packet to match
at most one rule on each switch. This completely addresses the
root cause of forwarding ambiguity. To implement RuleOut, we
develop a non-overlapping rule dependency graph, a series of
algorithms for incremental rule update and tag generation upon
it, and various optimization techniques toward scalability and
efficiency. We prototype RuleOut on the Ryu controller and Open
vSwitch and evaluate its performance over public rule sets such
as Stanford, Internet2, and Airtel1. RuleOut can use tags of only
several bits long to disambiguate thousands to millions of rules
and generate tags fairly fast within a few milliseconds.

Index Terms—Software-Defined Networking, forwarding fault,
source routing.

I. INTRODUCTION

Software-Defined Networking (SDN) has long been sus-
ceptible to forwarding anomalies due to rule inconsistencies
between the control and data planes [1]–[16]. In SDN, the
control plane (i.e., the controller) translates network man-
agement polices into packet forwarding rules [17]. It then
populates these rules to data-plane switches. Once the rules
that actually take effect on the switches differ from what have
been populated by the controller, a rule inconsistency occurs
and violates network management policies. The so caused
forwarding anomalies can lead to performance degradation and
security breaches [11].

SDN forwarding anomalies become a practical concern
because various root causes of rule inconsistencies have been
found on commercial switches. For example, some switches
acknowledge rule installation to the controller earlier than rules
take effect [2]. This leads to transient rule inconsistencies.
Furthermore, permanent rule inconsistencies can be induced
by certain commercial switches that do not correctly enforce
the priority order of rules [11], [18]. They may simply regard
the latest installed rules as the higher priority ones [18] or

S. Xi, K. Bu, W. Mao, X. Zhang, and K. Ren are with the College of
Computer Science and Technology, Zhejiang University, Hangzhou 310027,
China (e-mail: {shaokexi, kaibu, wsmao, xiaoyu.zhang, kuiren}@zju.edu.cn).
Corresponding Author: Kai Bu.

S. Xi, K. Bu, and K. Ren are also with ZJU-Hangzhou Global Scientific
and Technological Innovation Center, China.

X. Ren is with the GTTX Network Technology, China (e-mail: renx-
inxin@gttx.com).

incorrectly enforce rules with a large priority as the lowest-
priority ones [11]. Permanent inconsistencies are also destined
when bit-flip errors occur on Ternary Content-Addressable
Memory (TCAM), where rules are stored [19].

Unlike abrupt network malfunctions such as switch crashes
and link failures, forwarding anomalies caused by rule in-
consistencies are stealthy and hard to pinpoint. No matter
how thoroughly the correctness of the controller codebase
[11], [20]–[22], applications [23], [24], and rules [25]–[29]
is verified, we still cannot ensure that rules will faithfully take
effect on switches. A well-explored solution is to practice on-
switch rules using probe packets [3]–[5], [14]–[16], [19], [30].
Each probe packet is crafted to match a specific rule. If the
processing result conforms to the specific rule’s action, we
consider the rule correctly installed. Otherwise, we consider
it missing and leading to a rule inconsistency. However,
probe packets do not reveal the essential processing results
of production packets. Another line of research thus directly
tracks the forwarding traces of production packets [1], [6]–
[10], [12], [13], [31]–[35]. Solutions of this kind either mirror
forwarding states to trace collectors (e.g., the controller) [1],
[12], [13], [31], [35] or encode switch identities [6], [32]–
[34] or proofs [7]–[10] into packet headers. They require
additional parties to collect and analyze packet traces or even
require additional computation capability from switches. More
importantly, they defer detection of forwarding anomalies way
after mis-forwarded packets have fled the network.

In this paper, we present RuleOut as the first attempt to de-
tect and filter SDN forwarding anomalies in a complete, proac-
tive, and deployment-friendly way. Being complete, RuleOut
enables switches to directly verify forwarding correctness of
each production packet instead of indirectly inferring it via
probe packets. Being proactive, RuleOut enables switches to
detect and filter anomalies in real time without postponing
their exposure after they reach the incorrect destinations. To-
ward practicality, we implement completeness and proactive-
ness of RuleOut with high deployment easiness. In particular,
RuleOut can directly apply to off-the-shelf switches without
requiring additional computation capability.

The key idea of RuleOut is to disambiguate dependent
rules via augmenting their matching fields with unique tags.
It completely addresses the root cause of SDN forwarding
anomalies—a packet may match more than one rule on a
switch. Traditionally, switches use rule priorities to arbitrate
such forwarding ambiguity. The highest-priority rule domi-
nates when more than one rule matches the same packet.
Once the highest-priority rule is missing, its lower-priority
successor will take over and lead to a stealthy forwarding
anomaly. After RuleOut augments the matching field of each
of dependent rules with a unique tag, a packet can match at

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. YY, MONTH 2022 2

��������

���	
�����

��	
�����

�����	�
�����	�

�����	�

����������	

� �
�

�

�

����	�

����	�

Fig. 1: Example of SDN forwarding anomalies.

most one rule on a switch. Whenever the rule supposed to
process a packet is missing, the packet can be either discarded
or reported to the controller for further diagnosis. We develop a
non-overlapping rule dependency graph for assigning unique
tags to dependent rules. We have also explored a series of
optimization techniques (e.g, incremental graph construction,
unified matching-space operation, rule clustering) to boost
efficiency while preserving rule semantics.

We prototype the RuleOut service and agent on the Ryu [36]
controller and Open vSwitch [37]. The RuleOut service inside
the controller maintains the non-overlapping rule dependency
graph and generates unique tags across dependent rules. The
RuleOut agent is attached to endhosts. Borrowing the idea
from source routing, the agent queries the server for the
sequence of tags to pre-mark packets of each flow. We validate
RuleOut performance using three typical data sets—Stanford
[25], Internet2 [19], and Airtel1 [38]. The results show that
RuleOut can use tags of only 4 bits long to disambiguate
thousands to millions of rules. RuleOut is also extremely fast
in that both rule graph update and tag generation can be
delivered within a few milliseconds.

In summary, we make the following major contributions
against SDN forwarding anomalies.
• Disambiguate dependent rules by augmenting their

matching fields with unique tags (Section III). This com-
pletely removes the forwarding ambiguity as a packet can
match at most one rule on a switch.

• Integrate the disambiguation technique into SDN in a
non-intrusive way (Section III). Inspired by source rout-
ing, we develop an agent that enables endhosts to query
and pre-mark packets per flow with a tag sequence
corresponding to the sequence of rules supposed to
match. Any missing rule will trigger a mismatch over
packets it should match. This way, we can easily reveal
forwarding anomalies without any modification of off-
the-shelf switches.

• Propose a non-overlapping rule dependency graph for ef-
ficiently tagging rules (Section IV). We develop efficient
algorithms and optimization techniques for graph update
and tag generation in an incremental, efficient way.

• Implement disambiguation-based RuleOut as the first
attempt for complete, proactive, and deployment-friendly
detection and filtering of SDN forwarding anomalies
(Section III and Section IV). We prototype RuleOut on
the Ryu controller and Open vSwitch with about 4,000
lines of Python code. Evaluation results in Section V over
the Stanford [25], Internet2, [19], and Airtel1 [38] data

TABLE I: Example rule sets on switches in Figure 1. Rules
are indexed in descending order of priority and marked as 3
if they are successfully installed and as 7 otherwise.

Switch No. Match Action Status

A 1 ip dst = 10.15.201.* output: 1 3

B
1 ip dst = 10.15.201.37 output: 2 7

2 ip dst = 10.*.*.* output: 3 3

C
1 ip proto = http, port dst = 80 output: 2 3

2 ip dst = 10.*.*.* output: 3 3

sets demonstrate that RuleOut can use tags of only several
bits to disambiguate thousands to millions of rules and
generate tags fairly fast within milliseconds.

II. PROBLEM

In this section, we investigate the root causes and impacts
of SDN forwarding anomalies. We also review existing coun-
termeasures and underline their limitations in completeness,
proactiveness, and deployment easiness.

A. SDN Forwarding Anomalies

The control-data plane inconsistency is widely regarded as
the root cause of SDN forwarding anomalies [6]. Specifically,
it occurs when the installed rules on data-plane switches do
not conform to what have been issued by the control-plane
controller. Such inconsistencies tend to make the underlying
forwarding behavior deviate from the controller’s regulation.
Figure 1 showcases an SDN forwarding anomaly due to a
rule missing fault. As shown in Table I, rules on Switch B
intend to direct FTP connections to the FTP server (with IP
address of 10.15.201.37) via outport 2 while other packets to
Switch C via outport 3. In the given example, however, Rule
1 on Switch B is missing. Packets from Host 1 to the FTP
server will match Rule 2 on the FTP server and be incorrectly
forwarded to Switch C.

Unlike abrupt network malfunctions such as switch crashes
and link failures, a series of subtle and stealthy malfunctions
can also cause rule inconsistencies yet are hard to pinpoint.
Both switch software and hardware may lead to transient
or permanent inconsistencies. For example, the OpenFlow
protocol requires that switches send barrier messages to the
controller to acknowledge successful rule installation [39].
However, switches tend to send barrier messages earlier than
rules take effect [2]. This leads to transient rule inconsisten-
cies. Switches may also violate OpenFlow protocol specifi-
cations for optimizing efficiency [18]. For example, certain
commercial switches do not correctly enforce the priority order
of rules [11], [18]. They may simply regard the latest installed
rules as the higher priority ones [18] or incorrectly enforce
rules with a large priority as the lowest-priority ones [11].
Such permanent rule inconsistencies can even be introduced
by hardware bit-flip errors in TCAM that store rules [19].

Once a rule inconsistency occurs, corresponding forwarding
anomalies may breach network validity and security. For
example, they can violate network access control, break traffic
isolation, or deviate intended forwarding paths [1], [3], [4],

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. YY, MONTH 2022 3

[6]. As vendors keep their switch implementation proprietary,
users need effective and efficient countermeasures against
forwarding anomalies toward reliable SDN.

B. Countermeasures and Limitations

A fundamental countermeasure using forwarding proofs,
however, cannot directly apply to SDN switches. It is inspired
by path validation for securing the next generation of Inter-
net [40]–[43]. The key idea is that forwarding devices add
cryptographic proofs to packets they process. Such proofs are
then used to verify whether packets have followed designated
forwarding paths. Bringing path validation to SDN, SDNsec
[7] and REV [8], [9] require the controller to assign each
packet with a proof and each switch a cryptographic key. As
a packet traverses a switch, the switch updates the proof using
its key. Before the packet exits SDN, the controller verifies
whether its proof has been correctly updated in order by all
the switches it is supposed to traverse. However, current SDN
switches do not support cryptographic functions.

Countermeasures that are more feasible to off-the-shelf SDN
switches can be classified into two categories, probing and
tracing. Probing based solutions inject crafted probe packets
to the data plane and check whether they are processed by the
desired rules. However, such solutions reveal the forwarding
behaviors of probe packets instead of production packets.
Tracking based solutions, therefore, track the forwarding states
of production packets and reactively troubleshoot forwarding
anomalies once they occur. Such solutions face a trade-off
challenge of troubleshooting accuracy and resource overhead
for tracking forwarding states.
Probing examines rule correctness through injecting probe
packets to the data plane and verifies their forwarding cor-
rectness. Specifically, to verify whether a rule has been suc-
cessfully installed on a switch, the controller crafts a probe
packet that matches the rule as the highest-priority one among
all it can match on the switch. If the probe packet follows
the rule’s action, the controller regards the rule as correctly
installed. A fundamental challenge is how to minimize the
number of probe packets. ATPG [19] addresses this challenge
by associating forwarding correctness with reachability. That
is, if probe packets do reach the intended destination, the
controller regards all associated rules from the source to the
destination as correct. However, given that different rules may
have the same forwarding action, being forwarded to the
intended destination does not necessarily guarantee that the
packet matches all intended rules en route. Monocle [3] then
generates probe packets that enumerate matching possibilities
on a switch. RuleScope [4], [5] and FADE [30] further enhance
Monocle by detecting priority-swapping faults and associating
one probe packet with rules on multiple switches, respectively.
Finally, RuleChecker [14], [15] boosts the speed for generating
probe packets by taking the entire flow table (instead of a set
of dependent rules therein) as the input altogether. It is 5×
faster than Monocle and 20× faster than RuleScope.

Debugging the network proactively, probing based solutions
suite more for verifying relatively steady configurations. This
makes them inevitably vulnerable to the following limitations.

• The number of probe packets tends to be huge because
they have to exhaust the matching space of each rule.
Specifically, the scale of probe packets required by a rule
expands exponentially in terms of the number of wild-
cards in the rule [4]. It is time-consuming to generate so
many probe packets. Injecting them into the network also
consumes bandwidth and switch processing resources.

• Further and foremost, probe packets cannot reveal the
actual forwarding states of production packets, which are
the key purpose of network debugging.

Tracing debugs forwarding correctness by collecting forward-
ing traces of production packets per se. Related solutions
require that switches either mirror forwarding states to trace
collectors (e.g., the controller) [1], [12], [13], [31], [35] or en-
code their identities into packet headers [6], [32]–[34]. For ex-
ample, NetSight [1] uses switches to encapsulate every packet
header along with processing metadata (e.g., switch ID and
output port) into the so called postcards. Then switches send
the postcards to the controller/servers for future query. For
simplifying trace collection, CherryPick [32], PathDump [33],
and SwitchPointer [34] enable switches to directly encode their
identities into packet headers. Such encoded information is
also exported to storage for query. Without squeezing extra
states into packet headers, SPHINX [35] and FOCES [12], [13]
directly report on-switch flow counters to the controller for
anomaly detection. For example, after collecting the counters
of a specific flow from the switches the flow traverses, if these
counters show noticeable increase or decrease on a certain
hop, it is highly likely that hop encounters a forwarding
anomaly. Recently, PAZZ [16] marries tracing and probing
to collect forwarding traces of both production packets and
probe packets toward a more systematic detection framework.
It is, however, expensive to track the forwarding traces of all
packets. An interactive debugging solution in [31], VeriDP [6],
and DynaPFV [44] enhance efficiency by collecting aggregate
statistics of packets or traces of interested packets (e.g.,
suspicious traffic [31]).

Albeit directly revealing the forwarding states of production
packets, tracing based solutions share some of probing’s
limitations as well as show some of their own.

• The controller/servers need to store and process large-
scale forwarding traces. It tends to be overloaded and
turns into a bottleneck.

• The essence of reactiveness delays the detection and
troubleshooting of forwarding errors after the affected
traffic has already fled the network. Recently, BFPR [10]
leverages programmable switches to maintain a Bloom
filter based path tracer in packet headers. The receiver can
directly use path tracers to verify forwarding correctness.
However, it applies to only programmable switches and
delays filtering forwarding anomalies to receivers instead
of filtering them by switches on the fly.

To address the limitations of both probing and tracing
solutions, we suggest that a practically efficient solution should
simultaneously feature the following properties.
Completeness: Every possible forwarding error of production
packets can be detected.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. YY, MONTH 2022 4

TABLE II: Qualitative comparison of RuleOut proposed in this paper with existing solutions.

Principle Solution Completeness Proactiveness Deployability

Probing ATPG [19]; Monocle [3]; RuleScope [4], [5]; FADE [30]; RuleChecker [14], [15] 7 7 3

Tracing
NetSight [1]; CherryPick [32]; PathDump [33]; SwitchPointer [34]; SPHINX [35]

3 7 3
FOCES [12], [13]; PAZZ [16]

Disambiguating RuleOut (this paper) 3 3 3

Proactiveness: Each mis-forwarded packet can be filtered
immediately upon its occurrence.
Deployability: The solution should be readily applicable to
off-the-shelf SDN switches.

In this paper, we present RuleOut as the first attempt toward
filtering SDN forwarding anomalies with all the preceding
properties guaranteed (Table II). RuleOut disambiguates de-
pendent rules by augmenting their matching fields with unique
tags. It then pre-marks incoming packets with a sequence of
tags that associate with rules to be matched. This enables
switches to automatically detect and filter any packet matching
incorrect rules. Furthermore, RuleOut achieves such automatic
filtering of forwarding anomalies without switch hardware
change.

III. OVERVIEW

In this section, we present the key ideas of RuleOut. It
disambiguates dependent rules by augmenting their matching
fields with unique tags. This requires only lightweight addi-
tional support from endhosts to mark packet headers. Then
the ineffectiveness of any faulty rule leads to an unsuccessful
matching with the tagged packet. This not only avoids mis-
forwarding but also localizes the rule fault.

A. Motivation

We observe that a forwarding anomaly may occur when
a packet can match more than one rule on a switch. This
instantly motivates disambiguating rules as a fundamental so-
lution against SDN forwarding anomalies. If rules are crafted
such that a packet match at most one, the packet cannot
incorrectly match others if the supposed one happens to not
take effect. However, traditional dependent rules with over-
lapping matching fields and different priorities share common
matching packets. Upon multi-rule matching, the highest-
priority rule dominates. When we disambiguate each rule from
its dependent rules, even if the highest-priority rule is missing,
a packet cannot match lower-priority ones and thus avoids
misforwarding. Take the two rules on Switch B in Table I
for example. Rule dependencies are essentially because of
wildcards in rules. However, it is prohibitively expensive to
split a wildcarded rule by exhausting the matching range of
wildcards. For example, the 3-wildcarded Rule 2 on Switch
B in Table I should be split into 28 × 3 = 768 rules to
uniquely match every ip dst address in the 10.0.0.0/24 subnet.
The associative explosion of rule count renders it infeasible.

B. Idea

Based on the motivation of rule disambiguation, we propose
augmenting the matching field of each of dependent rules with

TABLE III: Motivating example of RuleOut. Rules in Table I
for switches in Figure 1 are augmented with tags in the
matching fields to de-overlap dependent rules.

Switch No. Match Action

A 1 ip dst = 10.15.201.*
tag = 0x1

output: 1
pop tag

B 1 ip dst = 10.15.201.37
tag = 0x1

output: 2
pop tag

2 ip dst = 10.*.*.*
tag = 0x2

output: 3
pop tag

C 1 ip proto = http, port dst = 80
tag = 0x1

output: 2
pop tag

2 ip dst = 10.*.*.*
tag = 0x2

output: 3
pop tag

a unique, non-wildcard tag. This can resolve the overlapping
matching fields of any traditionally dependent rules. Borrow-
ing the idea from source routing, we pre-tag a packet (in
VLAN/MPLS or other unused header fields) with a sequence
of tags of rules that it should match along the expected
forwarding path. The unique challenge to our solution is,
however, that tags should be assigned at a rule granularity
while source routing only needs a switch granularity. After
tagging rules and packets, we can successfully enforce a
unique packet-rule matching on every enroute switch. Once
a packet fails to match any tagged rules on a switch, it reveals
a rule fault and can be filtered or reported to the controller. A
potential forwarding anomaly is thus avoided in real time.

We illustrate the effectiveness of our proposal against for-
warding anomalies by revisiting the example in Figure 1. As
shown in Table III, we augment the matching fields of Rule 1
and Rule 2 on Switch B with tag 0x1 and tag 0x2, respectively.
The tags help render the two rules non-overlapping although
their original versions share an overlapping ip dst field. Mean-
while, the packet with destination address 10.15.201.37 for
connecting Host 1 with the FTP server is pre-tagged with
the sequence (0x1, 0x1), which indicates that the packet
should match Rule 1 on Switch A and Rule 1 on Switch B.
Tags are stripped from the packet hop by hop using the pop
actions supported by switches. This way, even if the higher-
priority Rule 1 becomes missing as in Table I and the packet’s
destination address matches Rule 2’s ip dst field, the packet
will not incorrectly match Rule 2 because tag 0x1 it carries is
different from tag 0x2 required by Rule 2.

In this paper, we implement the idea of rule disambiguation
through RuleOut, the first countermeasure against SDN for-
warding anomalies in a complete, proactive, and deployment-
friendly way. RuleOut simultaneously satisfies these three
properties outlined in Section II-B as follows. First, it satisfies
completeness by resolving the overlapping matching fields
of dependent rules. Whenever a rule happens to not take
effect, its missing is not hidden by its dependent rule with

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. YY, MONTH 2022 5

Rule
Store Update

Alert

Route
Request

Tag Reply

Tagged Packets

Core Services

Configuration Update

Augmented
Rules

RuleOut Service

Tag Request

Rule Dependency Graph

Route
Recovery

Fault Localization

RuleOut Agent

(a)

������ ����	
�� ����	
� ��	�����

����������

�������

�����	

�

�������

�����	

�����������

�

��������������	��

�����������	
����������������������������	��	���

�����������	
���������������������������	��	���

……

�

�
�

� � �

�������

��	
��������

�����������

�����	

�

(b)
Fig. 2: (a) RuleOut architecture consisting of the server (i.e., the dashed box) on the controller and the agent on endhosts (i.e,
senders and receivers). (b) Packet forwarding with RuleOut. ¶ The sender communicates with the RuleOut service with its
augmented RuleOut agent and gets the tag sequence of the route for a packet from the RuleOut service on the controller.

· The sender instruments the packet header with the tag sequence () and sends the packet to the first switch on the
forwarding path. Note that tags occupy traditionally unused fields of the packet header; we append them to other header
fields () for simplicity. ¸ Each switch matches the packet with flow table entries (°), strips the outermost tag used for
matching (®), and forwards the processed packet to the successor switch until ¹ the packet arrives at the receiver (¯). º

Upon rule updates, the controller populates the corresponding augmented flow table entries to switches.

a lower priority. In other words, any associative forwarding
anomaly can be detected. Second, RuleOut satisfies proactive-
ness because it pre-tags production packets in accordance with
the rules to be matched by them. Any forwarding anomaly
can be directly revealed by production packets without using
additional probing packets or collecting their traces. Third,
RuleOut is readily applicable to off-the-shelf switches because
it requires no special switch support.

C. Architecture

Figure 2(a) demonstrates the architecture of RuleOut. Its
key add-ons to SDN are a RuleOut server on the controller
and a RuleOut agent on the endhost. The RuleOut server aims
to disambiguate dependent rules, compile flow-rule bindings,
and localize faulty rules.

First, the RuleOut service leverages the non-overlapping
rule dependency graph for rule disambiguation. The traditional
rule dependency graph is essentially a directed acyclic graph
(DAG), tracking the dependency among rules with overlapping
matching fields. We adapt it into a non-overlapping version
where the out edges of each rule node share no common
matching space. Our rule disambiguation then augments the
matching fields of dependent rules with unique tags, which
are generated by the RuleOut service.

Second, the RuleOut service collaborates with the RuleOut
agent to enforce flow-rule bindings. Specifically, the RuleOut
agent sends the first packet of a flow to the controller. The
controller decides the forwarding path of this flow according
to the routing policy. The RuleOut service then identifies the
sequence of rules to be matched along the forwarding path.
Then it replies the corresponding sequence of tags of the
matched rules to the RuleOut agent, which pre-marks each
packet in the flow with the tag sequence before sending it to
SDN.

Third, after the packet enters SDN, it is expected to match
exactly the series of rules with the same tags as it carries.

query/update rule
dependency graph

tag packets
& send to switch

2

request route

connection set up

match?5

9 drop packets
& alert controller

6b miss

pop tag
& forward6a hit

4

3 generate tags

receiver

sender

1 8b no

8a yes

last hop?

7

Agent

Controller

Switch

administrator

10

Fig. 3: RuleOut workflow.
Figure 2(b) showcases the packet forwarding process with
RuleOut. Once any expected rule becomes ineffective, the
packet fails to match the expected tag and trigger an alert
to the controller. The alert message contains the unmatched
packet header. Exercising the packet header using local rules,
the controller can easily localize the faulty rule.

IV. DESIGN

In this section, we present the core of RuleOut design—
tag generation using the non-overlapping rule dependency
graph. The non-overlapping rule dependency graph maintains
an invariant that the matching space of each rule is covered by
that of its mutually non-overlapping out edges. This offers not
only fast incremental graph construction but also efficient tag
assignment for disambiguating dependent rules. We accord-
ingly develop various algorithms and optimization techniques.
RuleOut workflow. For ease of understanding, Figure 3
sketches the workflow of RuleOut to showcase where tag
generation, packet tagging, packet-rule matching, and rule
tagging fit into the big picture. Specifically, when the sender
sets up a new connection, its agent sends the route request
to the controller (Step 1). Upon receiving the request, the
controller identifies the forwarding path of the connection
and asks the RuleOut service for a tag sequence, which can
disambiguate rule matching along the chosen path (Step 2-
3). The RuleOut service generates the tag sequence over a

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. YY, MONTH 2022 6

series of rules using a non-overlapping dependency graph
(Section IV-A, Section IV-B, and Section IV-C) (Step 10). The
graph can be incrementally constructed upon the administrator
updates routing policies. Rules are augmented along with
graph construction and populated from the controller into
switches subsequently. Meanwhile, the controller replies the
tags to the agent, which embeds these tags into packet headers
before sending packets out (Step 4). The tagged packets are
expected to match augmented rules at each switch along the
forwarding path until leaving the network (Steps 6a-8). The
mismatching events indicate forwarding anomalies (Step 6b)
and trigger alerts to the controller (Step 9).

A. Observation of Rule Dependency Graph

Since RuleOut detects forwarding anomalies through dis-
ambiguating dependent rules, it is necessary to identify the
dependency relationship of rules. A typical way uses the rule
dependency graph based on the geometric model and header
space algebra [25]. Each graph node represents a rule while a
directed edge from a high-priority rule (child node) to a low-
priority rule (parent node) indicates the dependency between
them [45]. Formally speaking, let RM denote the matching
space of rule R. RM covers the set of packet headers that
match rule R [46]. A dependency exists between any pair of
rules Ri and Rj with RM

i ∩ RM
j 6= ∅. Assume that Ri has a

higher priority than Rj does. A directed edge E from Ri to Rj

exists. We refer to Ri and Rj as Esrc and Edst, respectively.
We also define the matching space of E as the intersection of
RM

i and RM
j , that is, EM = RM

i ∩ RM
j [46]. We add an all-

wildcard rule R0 with the lowest priority into the dependency
graph for ease of design. Any rule node is at least a direct child
of R0 if it does not overlap with any other lower-priority rules.

Given that a rule takes effect on packets that match none of
its higher-priority dependent rules, we have Definition 1.

Definition 1. Exclusive Matching Space REXM of rule R is
the set of packet headers that 1) belongs to the matching space
of R yet 2) does not belong to the matching spaces of R’s
higher-priority dependent rules. Let Rin = {E | Edst = R}
represent the set of edges from R’s higher-priority dependent
rules. We can define REXM as:

REXM = RM −
⋃

E∈Rin

EM . (1)

We observe that rule update can be essentially modelled as
variation of exclusive matching spaces. This observation moti-
vates efficient and incremental update of the rule dependency
graph instead of re-building it from scratch upon inserting or
deleting rules. Specifically, an inserted rule subtracts exclusive
matching spaces of its lower-priority dependent rules. In con-
trast, a deleted rule increases them. Let ∆Rin denote the set of
edges from rule R’s newly updated higher-priority dependent
rules to R. Then the variation of R’s exclusive matching space
because of ∆Rin can be defined as follows.

∆REXM =
⋃

E∈∆Rin

(−1)i × EM, (2)

xxxx (0)

x1xx (10)

1xxx (20)

x11x (30)

111x

x1xx

11xx10xx

011x

xxxx (0)

x1xx (10)

1xxx (20)

x11x (30) x11x

1xxx111x

x11x x1xx

11xx

(a)

(c)

(b)

(d)

xxxx (0)

x1xx (10)

1xxx (20)

x11x (30)

111x

x1xx

11xx10xx

011x

0111

0111 (15)
xxxx (0)

x1xx (10)

1xxx (20)

x11x (30)

111x

x1xx

11xx10xx

0110

0111

0111 (15)

0111

Fig. 4: Comparison of (a) the traditional rule dependency graph
and (b) its non-overlapping version. Each ellipse represents a
rule node annotated with its matching space and priority (in
the parentheses). The traditional rule dependency graph adds
a directed edge for any pair of dependent rules, containing
overlapping or redundant edges. We observe that it is sufficient
to build a non-overlapping dependency graph by making
each node’s out edges non-overlap. The observation is further
verified through examples in (c) and (d).

where i is an indicator for increasing or decreasing the
exclusive matching space given an added or deleted edge E:

i =

{
1, if E is added;

0, if E is deleted.

Based on Equation 2, we further observe that to optimize
graph update, the ideal incremental update solution should
minimize graph changes to only vertices and edges related
to the added or deleted rules. Such an ideal solution requires
that the matching spaces of all edges connected with a rule
node are non-overlapping. According to the second union item
in Equation 2, if edges are overlapping, adding or deleting an
edge does not necessarily increase or decrease the exclusive
matching space. However, the existing rule dependency graph
does not support the non-overlapping property we expect.
As shown in Figure 4(a), the traditional rule dependency
graph maintains a directed edge between any two overlapping
nodes. Consider, for example, when adding the rule node for
x11x(30). The traditional rule dependency graph adds three
edges from it to dependent rules. However, the edge from
x11x(30) to xxxx(0) does not vary the exclusive matching
space of xxxx(0) because the edge’s matching space is already
included by an existing edge to xxxx(0) (i.e., the edge from
x1xx(10) to xxxx(0)). It is, therefore, unnecessary to add
such edges. Similarly, the other two edges from 1xxx(20) and
x1xx(10) to xxxx(0) overlap with each other’s matching space.
Their overlapping leads to redundant updates of exclusive
matching spaces.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. YY, MONTH 2022 7

B. Non-overlapping Rule Dependency Graph Construction

We continue with investigating the example in Figure 4
to explore how to build a non-overlapping rule dependency
graph. To make the in-edges to x1xx(10) non-overlapped
(Figure 4(a)), it is sufficient to make the related out-edges
from 1xxx(20) and x11x(30) to x1xx(10) non-overlapped (Fig-
ure 4(b)). To double check the effectiveness of the preceding
intuition, we insert 0111(15) as shown in Figure 4(c). Tra-
ditionally, the insertion of 0111(15) introduces several edges
connecting it to rules with dependency (e.g., xxxx(0)). We
showcase only the introduced edge from 0111(15) to x1xx(10)
to concentrate our discussion on edges related to x1xx(10).
In this case, this new edge 0111 overlaps an existing edge
011x from x11x(30) to x1xx(10). This overlapping can be
solved using another new edge from x11x(30) to 0111(15)
(Figure 4(d)); this edge actually helps to non-overlap both out-
edges from x11x(30).

Motivated by the example in Figure 4, we present Theo-
rem 1 to formally prove that the sufficient condition to build
a non-overlapping rule dependency graph is that out edges of
any node should have non-overlapping matching spaces.

Theorem 1. Consider a rule dependency graph G = (Rv, E)
where Rv denotes the set of vertices each corresponding to a
rule and E denotes the set of edges each connecting a pair
of vertices. G contains no ambiguity, that is, dependent rules
in G have different priorities. If the matching spaces of any
vertex’s out edges are non-overlapping, the matching spaces
of any vertex’s in edges are also non-overlapping. Formally
speaking, given Rout = {E | Esrc = R}, ∀R ∈ Rv and
∀(Ei, Ej) ∈ Rout where Ei 6= Ej , if the following condition
holds:

EM
i ∩ EM

j = ∅, (3)

then ∀R′ ∈ Rv , ∀(Em, En) ∈ R′in where Em 6= En, the
following condition also holds:

EM
m ∩ EM

n = ∅. (4)

Proof. We prove Theorem 1 by contradiction. Assume that
Condition 3 holds while Condition 4 does not so that EM

m ∩
EM

n 6= ∅. Let Rm = Esrc
m and Rn = Esrc

n . When EM
m ∩

EM
n 6= ∅, we have (RM

m ∩ R′M) ∩ (RM
n ∩ R′M) 6= ∅ and thus

RM
m ∩ RM

n 6= ∅. This indicates the dependency between Rm

and Rn. Without loss of generality, consider when Rm has
a higher priority than Rn has. There should be an edge Ek

from Rm to Rn. For Rm’s two out edges Em and Ek, their
matching spaces have the following relationship:

EM
m ∩ EM

k = (RM
m ∩R′M) ∩ (RM

m ∩RM
n) 6= ∅, (5)

which contradicts with Condition 3. Therefore, Conditions 3
and 4 should simultaneously hold. This proves Theorem 1.

Following Theorem 1, we develop Algorithm 1 for incre-
mental construction of the non-overlapping rule dependency
graph. The key invariant to maintain is that all out edges
of a rule node share mutually non-overlapping matching
spaces. Given rule R, its out edges Rout, and rule Ri with
Ei = (R,Ri) ∈ Rout, we compute EM

i as:

EM
i = RM ∩RM

i −
⋃

EM
j , (6)

Algorithm 1: Incremental Rule Insertion
Input: Non-overlapping dependency graph

G = (Rv, E), Inserted rule R
Output: Updated non-overlapping dependency graph

G′

1 Insert (Matching space: M , Root: R0, Rule: R) for
E ∈ Rin

0 do
2 if M ∩ EM 6= ∅ then
3 R′ ← Esrc;
4 if R′.priority > R.priority then
5 new E′ ←< R′, R >;
6 E′M ←M ∩ EM ;
7 R′out ← R′out ∪ {E′};
8 Rin ← Rin ∪ {E′};
9 EM ← EM − (M ∩ EM);

10 if EM = ∅ then
11 R′out ← R′out − {E};
12 Rin

0 ← Rin
0 − {E};

13 else
14 Insert(M ∩ EM , R′, R);
15 M ←M − (M ∩ EM);

16 if M 6= ∅ then
17 new E′ ←< R,R0 >;
18 E′M ←M ;
19 Rout ← Rout ∪ {E′};
20 Rin

0 ← Rin
0 ∪ {E′};

21 Insert(RM , G.R0, R);

where Ej = (R,Rj) ∈ Rout and Rj has a higher-priority
than Ri does. As shown in Figure 4(b), the matching space
of the edge from 1xxx(20) to xxxx(0) is equal to 1xxx ∩
xxxx − 11xx = 10xx. The computation of Equation 6 is
recursively enforced during incremental update. Initially, we
start from the lowest-priority all-wildcard rule R0. Given that
the initial Rin

0 is empty, we directly add an edge from the
added R to R0 (lines 17-21). Later on, each inserted rule
R needs to be compared with existing edges (lines 2-16).
Once it introduces edges from or to some existing nodes, the
corresponding edges’ matching spaces are updated. If all the
out edges cannot cover the entire matching space of R, we
complete it by adding an edge from R to R0 (lines 17-21).

Rule deletion in Algorithm 2 is relatively straightforward to
handle. The key is to check whether deleting rule R necessi-
tates connecting previously isolated nodes or incrementing the
matching spaces of existing edges. Such cases happen when
R’s in edges and out edges share overlapping matching spaces
(lines 5-9). After adding these edges, we can delete rule R and
all its in edges and out edges (line 10 and lines 11-13).

C. Tag Generation

Given the non-overlapping rule dependency graph, tag gen-
eration preserves an invariant that any two dependent rules
should be assigned with different tags. To make tags fit
into packet headers, we need to reuse tag values as much
as possible. Since non-overlapping rules cannot match the
same packet, they can be assigned with the same tag without

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. YY, MONTH 2022 8

Algorithm 2: Incremental Rule Deletion
Input: Dependency graph G = (Rv, E), Deleted rule

R
Output: Updated dependency graph G′

1 for Ei ∈ Rout do
2 Ri ← Edst

i ;
3 for Ej ∈ Rin do
4 Rj ← Esrc

j ;
5 if EM

i ∩ EM
j 6= ∅ then

6 new E ←< Rj , Ri >;
7 EM ← EM

i ∩ EM
j ;

8 Rout
j ← Rout

j ∪ {E};
9 Rin

i ← Rin
i ∪ {E};

10 Rin
i ← Rin

i − {Ei};
11 for E ∈ Rin do
12 R′ ← Esrc;
13 R′out ← R′out − {E};

inducing matching ambiguity. In contrast, nodes on the same
path may have dependencies and they should be assigned with
different tags. Algorithm 3 shows the incremental tag gener-
ation process along with increment rule insertion. Because a
rule node may be inserted into any position of a path, we need
to search both directions toward the highest-priority child node
(lines 1-5) and the lowest-priority parent node (lines 6-10) for
identifying the assigned tags on this path. We use set S to
gather potentially overlapping nodes on the path (lines 11-
13). Then, we choose the minimum value not used by any
nodes in the set S as R’s tag. This greedy strategy minimizes
the tag value and guarantees sufficiently short tag fields.

D. Optimization

Lazy minus of matching spaces. The frequent set mi-
nus operations during header space analysis [25] for match-
ing space update turn out to be very expensive. Consider
xxxx−0000=1xxx∪x1xx∪xx1x∪xxx1 for example. Subtract-
ing a small set from a large space leads to an explosion in
space fragments. Subsequently, it needs to exhaust all frag-
ments to determine whether an element (e.g., 0001) matches
one of them. This leads to a high overhead in time and space.
We introduce a lazy minus technique to address the issue.
It records equations instead of solving them. Specifically, we
record a header space object in the format of P =

⋃
Pi, where

Pi = Pi.hs − Pi.sub, Pi.hs is a binary string representing
a matching space, and Pi.sub is a list of binary strings
representing the area subtracted from Pi.hs. We compute the
minus between two header space objects as:

P −Q = e ∈ P ∧ e /∈ Q

= e ∈ (P1 ∪ ... ∪ Pn) ∧ e /∈ (Q1 ∪ ... ∪Qm)

=

n∨
i=1

(e ∈ Pi ∧ (

m∧
j=1

e /∈ Qj)).

This way, we maintain only expressions instead of many space
fragments they may result in. This also confines the scale of
computation upon rule update.

Algorithm 3: Incremental Tag Generation
Input: Dependency graph G = (Rv, E), Inserted rule

R
Output: Tags = {R : value}

1 UpDFS (Graph: G, Rule: R, Set: S) for
Ri ∈ Rchildren do

2 if Ri /∈ S then
3 S ← S ∪ {Ri};
4 UpDFS(G,Ri, S);

5 DownDFS (Graph: G, Rule: R, Set: S) for
Rj ∈ Rparents do

6 if Rj /∈ S then
7 S ← S ∪ {Rj};
8 DownDFS(G,Rj , S);

9 S ← ∅;
10 UpDFS(G,R, S);
11 DownDFS(G,R, S);
12 R.tag ← minT where ∀s ∈ S, s.tag 6= T ;

Rule clustering by potential dependency. The time com-
plexity of incremental rule node insertion or deletion is O(E),
where E denotes the number of directed edges in the graph.
Among all the edges, however, only a small group of them may
have dependency with the inserted/deleted rule. To quickly
narrow down the target group, we cluster rules by their po-
tential dependency. We choose the ip dst field as a clustering
reference as most forwarding rules specify the destination IP
address. Maintaining a group for each individual IP address,
however, is expensive. We follow the commonly used prefix
tree structure and select IP prefixes of destination addresses
for classifying rules. Our experiment results show that a 16-bit
prefix tree for the ip dst field can speed up graph construction
by more than 100 times.
Graph division. We explore further efficiency by dividing a
large dependency graph into smaller subgraphs. The division
reference should be a matching field with a limited matching
range. In RuleOut implementation, we choose the in port field.
If a rule does not specify in port, we insert a replicate of it
into each subgraph and maintain their status globally.

V. EVALUATION

In this section, we prototype RuleOut and report the evalu-
ation results.
Methodology. We implement the RuleOut service and agent
in Python with about 4,000 lines of code using the Ryu
controller [36] and Open vSwitch [37]. We evaluate RuleOut
performance on three publicly available and widely used data
sets—Stanford, Internet2, and Airtel1—which are collected
from the Stanford campus network [25], Internet2 nationwide
network [19], and SDN-based ONOS-controlled network [38],
respectively. The Stanford data set contains 16 routers with
more than 757,000 forwarding rules and 1,500 ACL rules.
The Internet2 data set contains 9 routers with approximate
100,000 forwarding rules. We use scripts to translate these
static router configurations into OpenFlow rules. The Airtel1
data set contains about 14,000,000 dynamic insertion and

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. YY, MONTH 2022 9

sender hop 1 hop 2 hop 3 hop 4 receiver
hop identifier

10

15

20

25
pa

ck
et

s (
x

1,
00

0)

rule missing

priority swapping

send
receive

Fig. 5: Effectiveness for detecting and filtering forwarding
anomalies. Switches at hop 2 and hop 3 have emulated
rule inconsistency due to rule missing and priority swapping,
respectively.

removal traces of IPv4 forwarding rules, which are generated
by an upper layer SDN-IP application. Some of the updates are
triggered by link failure events. We run all the experiments on
an Ubuntu 18.04 system with a quad-core Intel(R) Core(TM)
i7-7700 CPU @ 3.6 GHz, a 1 MB L2-cache, and a 16 GB
DRAM.
Metrics. In particular, we evaluate feasibility and efficiency
of RuleOut using the following metrics.
• Anomaly filtering rate characterises the effectiveness of

RuleOut for detecting and filtering forwarding anomalies.
It quantifies the percentage of packets filtered with respect
to packets encountered forwarding anomalies.

• Tag length indicates how long tags are to differentiate
dependent rules in a large rule set. A practically efficient
solution should limit tag overhead in packet headers.

• Dependency intensity measures the percentage of rules
with dependency in a given rule set. It indicates to what
extent the control-data plane inconsistency may affect
forwarding correctness.

• Graph construction/update time measures how fast our
non-overlapping rule dependency graph can model a rule
set. Since we build the graph incrementally, we focus
on the time for inserting or deleting a rule given a
dependency graph of different sizes.

• Tag generation time quantifies how fast to tag a rule after
it is inserted to the dependency graph.

• Tag query time evaluates the swiftness for finding the
matching rules for a packet. Then the sequence of tags
from these rules is returned to the querying endhost.

Results. Extensive experiment results show that RuleOut can
accurately detect and filter forwarding anomalies. For all the
verified rule sets containing thousands to millions of rules,
RuleOut uses only 4-bit tags to disambiguate dependent rules.
It can complete not only rule insertion and deletion but also
tag generation and query within milliseconds.

A. Anomaly Filtering Rate

To demonstrate the effectiveness of RuleOut for detecting
and filtering forwarding anomalies, we introduce a metric
called anomaly filtering rate. It quantifies the percentage of
packets filtered with respect to packets encountered forward-
ing anomalies. We emulate rule inconsistency due to rule
missing and priority swapping on different hops and count
the packets each hop receives and sends. If no forwarding
anomaly occurs, then no packet would be dropped; the number
of received packets and that of sent packets on each hop

1 2 3 4 5
tag value

10−3

10−2

10−1

100

101

102

pe
rc

en
ta

ge
 (%

) 99

0.15

0.016
0.005

0.002

(a) Stanford (Forwarding)

1 2 3 4 5 6 7 8 9 10 11 12
tag value

10−1

100

101

102

pe
rc

en
ta

ge
 (%

) 67

6 6 5
3

0.31 0.32

7

1

0.22
0.13 0.11

(b) Stanford (ACL)

1 2 3
tag value

10−2

10−1

100

101

102

pe
rc

en
ta

ge
 (%

) 99

0.86

0.025

(c) Internet2

1 2 3
tag value

10−3

10−2

10−1

100

101

102

pe
rc

en
ta

ge
 (%

) 99

0.12

0.002

(d) Airtel1

Fig. 6: Distribution of tag values in different rule sets.

450 508 583 591 633 662 741 926 944 991
1213

2896
61068

61112
61208

61883

rule scale

0

5

10

m
ax

 ta
g

va
lu

e

3
4

12

3 3
4 4 4 4

5
4

12

5 5 5 5

(a) Stanford

8446
8504

8539
8555

8723
8812

8827
8977

9018

rule scale

0

1

2

3

m
ax

 ta
g

va
lu

e 3 3 3 3 3 3 3 3 3

(b) Internet2

Fig. 7: Maximum tag values for disambiguating different scale
of rules on (a) 16 routers in the Stanford data set and (b)
9 routers in the Internet2 data set. Routers are sorted in
ascending order of rule scale.

should be identical. We emulate rule errors in a controlled
way such that a known number of packets fails to match
with them and get filtered. The emulated scenario is chosen
from the network topology of Stanford University, with each
switch/router populated with rules in the Stanford rule set.
Then we randomly choose a routing path through which two
endhosts (i.e., sender and receiver) perform a regular network
perf test.

Figure 5 reports packet counts at each hop. In the emulation,
the sender initially sends 25,501 packets in total. These packets
are supposed to reach the receiver via four hops of routers. We
emulate rule missing and priority swapping on hop-2 and hop-
3 routers, respectively. Both types of rule inconsistency make
affected packets match with no rule and thus get filtered. We
pre-craft the number of to-be-affected packets on the sender
as 8,511 on both hop-2 and hop-3 routers. The number of
sent packets on the hop-2 router (i.e, the number of received
packets on the hop-3 router) is exactly 25,501−8,511=16,990.
Similarly, the hop-3 router filters 8,511 more packets due to the
priority-swapping fault. This shows that RuleOut successfully
detects forwarding anomalies and achieves a 100% anomaly
filtering rate.

B. Tag Length

As discussed in Section IV-C, feasibility of RuleOut de-
pends on sufficiently short tags that can fit in packet headers.
Tag length further depends on the scale of tag values for dis-
ambiguating dependent rules. Figure 6 shows the distribution
of tag values RuleOut generates to disambiguate Stanford,
Internet2, and Airtel1 rules. To our surprise, 12 tags (except
a default one for tagging the lowest-priority all-wildcard rule
R0) are sufficient for disambiguating all these sets containing
thousands to millions of rules. Such short tags require only
up to 4 bits to encode. This encouraging result is mainly
because that a very small proportion of matching fields overlap
in realistic configurations. More than 99% of forwarding rules
(Figures 6(a), (c), and (d)) and 67% of ACL rules (Figure 6(b))
are assigned with tag value one; when these rules are inserted,

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. YY, MONTH 2022 10

bbra bbrb bozabozb coza cozb gozagozbpozapozb roza rozb soza sozb yoza yozb

router identifier

0

50

100

de
pe

nd
en

cy
 in

te
ns

ity
 (%

)

80.2
90.5

33.0 34.6

98.8 98.8

23.6 21.5 23.4 23.8 27.6 27.7

97.8 98.9

67.6

85.2

(a) Stanford

atla chic hous
kans losa

newy* salt seat
wash

router identifier

0.0

2.5

5.0

7.5

de
pe

nd
en

cy
 in

te
ns

ity
 (%

)

7.3

5.1
4.0

6.6

4.3

7.7

4.0 3.8

7.4
(b) Internet2

Fig. 8: Dependency intensity of rules on (a) 16 routers in the
Stanford data set and (b) 9 routers in the Internet2 data set.

they are directly dependent on the all-wildcard rule R0. More-
over, ACL rules share more dependencies than forwarding
rules do because they specify constraints on more header
fields toward finer-grained forwarding behaviors. Therefore,
in Figure 6(b), ACL rules require more tags to differentiate.

To further verify the property that tag length depends on
dependency complexity instead of rule scale, we measure the
maximum tag value for disambiguating rules on each router
in the Stanford and Internet2 data sets. Specifically, for each
of the 16 routers in the Stanford data set and the 9 routers
in the Internet2 data set, we build its non-overlapping rule
dependency graph, generate tags for disambiguating dependent
rules, and report the maximum tag value in Figure 7. While
sorting routers in ascending order of their rule scale, we do
not observe a noticeable increase of maximum tag value with
rule scale. As shown in Figure 7(a), the Stanford router with
450 rules requires the maximum tag value of 3 while the one
with 61,883 rules requires only 5. For all Internet2 routers
in Figure 7(b), they require the same maximum tag value of
3 to encode 8,446∼9,018 rules. In contrast, rule dependency
complexity decides tag length. For example, the two Stanford
routers with 583 rules and 2,896 rules require a maximum
tag value of 12, which is much larger than 5 used by routers
with more than 60,000 rules. This is because they happen to
hold some ACL rules that have complex intrinsic dependencies
(Figure 6(b)).

C. Dependency Intensity

Note that short tags do not necessarily indicate that only
a small portion of rules overlap with others. To address
this potential concern, we measure dependency intensity of
the Stanford and Internet2 rule sets. Dependency intensity
quantifies the percentage of rules that are dependent on at least
one other rule. If any such rule becomes faulty, it might induce
forwarding anomalies. Figure 8 reports the measurements over
the Stanford and Internet2 rule sets. The results show that
routers in the Stanford data set and the Internet2 data set can
install up to 98.9% and 7.7% dependent rules, respectively. For
the Stanford data set, dependency intensity ranges from 21.5%
to 98.9%. All are over 20% and half are higher than 60%. The
Internet2 data set shows a relatively smaller scale of depen-
dency intensity. Routers therein install rules with dependency
intensity ranging from 3.8% to 7.7%. This is because that the
Internet2 data set does not publicize ACL rules, which tend to
involve more dependencies. In practical network applications,
more and more emerging services such as stock trading and
online gaming necessitate highly reliable traffic forwarding
[47]. Even sporadic forwarding anomalies may cost customers’
significant profits and providers’ troubleshooting efforts.

1k 6k 11k 16k 21k 26k 31k 36k 41k 46k 51k 56k 61k
rule scale

0

1

2

3

4

5

6

7

tim
e

(m
s)

(a) Stanford
insert
delete
tag

1k 2k 3k 4k 5k 6k 7k 8k 9k
rule scale

0.00

0.05

0.10

0.15

0.20

0.25

0.30

tim
e

(m
s)

(b) Internet2
insert
delete
tag

Fig. 9: Speed of graph update and tag generation in different
rule sets: (a) Stanford, (b) Internet2, and (c) Airtel1. (d) Effect
of optimization techniques on rule insertion speed.

D. Graph Update Time

We first evaluate RuleOut efficiency and scalability by
measuring rule insertion and deletion time during incremental
update of the non-overlapping rule dependency graph. Since
the Stanford and Internet2 sets do not provide the rule update
order, we emulate a random update order without loss of
generality. We also find that inserting or deleting an individual
rule is extremely fast, with a time span quite short to measure.
We choose to measure the aggregate update time per 1,000
rules and then use its one thousandth as the average update
time per rule. To best quantify RuleOut scalability as rule
scale increases, we focus on the routers with the most rules in
Stanford and Internet2 sets. Figure 9(a) and Figure 9(b) report
update time for both sets. Both time for inserting and deleting
a rule increases with rule scale. In comparison with deletion,
insertion takes more time because it usually involves matching
with more edges. When the graph contains fewer than 10k
rules, almost both insertion and deletion can be finished in
less than 0.5 ms. Even given more than 60k rules in the graph,
update can still complete within 4 ms on average (Figure 9(a)).
Some fluctuations may appear during update (e.g., cases with
46k and 56k rules). We suspect that this is mainly because of
the random update order we emulate.

Different from the Stanford and Internet2 sets, the Airtel1
set provides the exact order of rule update. We can easily
replay the trace therein and record the update time. Since it
contains more than 14 millions of rule updates, we report the
statistics upon every 10k updates in Figure 9(c). Rule update in
Airtel1 is much faster than in Stanford and Internet2 because
Airtel1 uses a rather simple rule format, which specifies only
the IPv4 header fields. The most expensive insertion operation
can complete in less than 1 ms.

E. Tag Generation Time

Along with rule update time, we report also tag generation
time in Figure 9(a)∼Figure 9(c). It demonstrates a similar

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. YY, MONTH 2022 11

1 2 3 4 5 6 7 8

dependency depth

10
−2

10
−1

10
0

10
1

tim
e

(m
s)

Query Time

Fig. 10: Tag query time with varying dependency depth.
Measurements per depth are plotted with min-max values
and 25th-50th-75th percentile values and marked with average
values.

trend as update time, that is, it takes a longer time to tag a rule
as rule scale increases. Overall, tag generation is much faster
than rule insertion and deletion. For Stanford and Internet2
sets, tagging a rule among fewer than 10k ones takes less
than 0.1 ms. Airtel1 supports an even faster tagging process,
taking less than 0.01 ms to tag a rule on average.

F. Optimization Effect

Figure 9 (d) demonstrates the effect of our optimization
techniques—lazy minus and rule clustering. The results val-
idate how our optimization guarantees scalability and effi-
ciency. Specifically, we compare three versions of RuleOut—
the original RuleOut, one without rule clustering, and one
without lazy minus. First, rule clustering narrows down rule
scale for update. Without this optimization, the algorithm
has to waste much time in matching unrelated rules. This
significantly limits scalability. As shown in Figure 9(d), when
the graph has 2.8k rules, it already takes near 30 ms to insert
a rule and becomes prohibitively slow. After integrating rule
clustering, both of the other two versions deliver a satisfactory
scalability. However, without using lazy minus, the algorithm
needs to maintain more and more fragmented matching spaces
as rule scale increases. This tends to quickly drain memory
upon 20k rules and makes the algorithm stuck. With both rule
clustering and lazy minus integrated, RuleOut can update a
large graph fairly fast.

G. Tag Query Time

Finally, we report our measurement over tag query time.
Two major factors dominate query time for the tag sequence
of a specific route. One is the number of switches on the
route. The other is the time for finding the matching rule
of the queried packet on each switch. Typical SDN-oriented
networks (e.g., the Stanford campus network [25]) usually
feature with short routes within three hops [25]. We thus focus
on tag query time on individual switches. Specifically, finding
the highest-priority matching rule for a packet starts with the
lowest-priority all-wildcard R0. It takes a longer time as the
dependency chain expands. This is exactly what the statistics
in Figure 10 demonstrate. Besides dependency depth, the in-
degree of a rule node for matching also affects the query time.
In particular, when a rule node has more in-edges, it averagely
takes more matching operations to determine whether another
rule down the dependency chain matches the queried packet.
Given that most dependency chains may expand only one

(Figure 6(a), (c), and (d)) or several hops (Figure 6(b)),
RuleOut can complete tag query on each switch within 1 ms
for most queries.

VI. DISCUSSION

A. Reactive Rule Installation

If the controller installs rules reactively, it generates rules for
processing unknown flows upon their arrival. In this case, the
RuleOut service may receive a query packet whose matching
rules are yet to be generated by the controller. This can be
addressed by a simple engineering choice. Specifically, upon
receiving a query packet, the RuleOut service first matches
the packet header with the dependency graph of the ingress
switch. An unknown packet fails to match with any existing
rule therein. The RuleOut service then hands it over to the
controller module for rule generation. Once the desired rules
are available, the RuleOut service continues to insert them into
the dependency graph, augment them with tags, and issue the
tag sequence to the sender of the query packet.

B. Bit-Flip Errors

Bit-flip errors may occur to packets in transmission or rules
on switches.

For packets, bit-flip errors can occur to either packet headers
or packet payloads, or both. Of more concern to forwarding-
anomaly detection are bit-flip errors in packet headers. In
particular, if flipped bits happen to be in header fields that
match against rules, the related packet may match with no rule
or with an incorrect one. Both lead to forwarding anomalies.
Existing solutions can detect such anomalies by collecting
packet traces. For RuleOut, since we have augmented packet
headers with a sequence of tags. For a packet with bit-
flit errors to match with an incorrect rule, bit-flip errors
should 1) simultaneously occur in both tags and header fields,
and 2) coincidentally make the faulty tags and header fields
happen to match with a certain on the switch. We suspect
that this related to only rare cases. Furthermore, we find that
forwarding-anomaly detection does not necessarily need to pay
special attention to bit-flip errors in packets. Integrity check
metadata such as checksums in packet headers or message
authentication codes in packet payloads are readily available
to detect and filter corrupted packets.

For rules, bit-flip errors turn on-switch rules into different
encodings in hardware and thus make them process packets
that they are not supposed to match with. Existing solutions
still need to collect packet traces for detecting the so caused
forwarding anomalies. As discussed in Section II, it neces-
sitates an unbearable overhead to use traces for verifying
forwarding correctness of each packet. That enforces heavy
processing workloads on both switches and the controller as
well as high bandwidth consumption between them. As for
our RuleOut, bit-flipped rules lead to two types of impacts on
packet forwarding. First, it is highly likely that the packets that
faulty rules are supposed to match have no rule to match and
get dropped. Second, it is relatively rare that faulty rules turn to
match with some packets and make those packets incorrectly
forwarded. The second case is relatively rare because RuleOut

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. YY, MONTH 2022 12

has already augmented overlapping rules with unique tags. A
faulty rule needs to coincidentally flip some bits in tags and
other matching fields to match with tagged packets. In other
words, if RuleOut encounters no bit-flipped rules, we do not
have to bother any potential forwarding anomaly caused by
rules. This would be a luxury for existing solutions because
even if rules are correctly installed and taking effect, intrinsic
overlappings among them are exactly a critical root cause for
forwarding anomalies in SDN. In contrast, our RuleOut can
fundamentally use hardware error detection [48]–[50] to detect
and re-install bit-flipped rules.

VII. CONCLUSION

We have studied the idea of disambiguating rules against
SDN forwarding anomalies. It augments the matching fields of
dependent rules with unique tags such that a packet can match
at most one rule on a switch. Whenever any rule becomes
faulty, a packet supposed to match the faulty rule cannot
incorrectly match other rules. This way, we can automatically
filter forwarding anomalies without introducing probe packets
or collecting packet traces. Leveraging source routing, we
implement rule disambiguation through RuleOut. We develop
a series of efficient algorithms and optimization techniques to-
ward practicality and efficiency. Evaluation results over public
rule sets show that RuleOut uses tags of only several bits long
to disambiguate thousands to millions of rules. RuleOut can
tag a rule and respond to tag query fairly fast within a few
milliseconds. For future work, we plan to practice RuleOut
on hardware switches and adapt RuleOut to multipath data
center networks [51]. We also plan to release the source code
of RuleOut upon publication.

ACKNOWLEDGMENT

We would like to sincerely thank the Editors and Reviewers
of IEEE/ACM Transactions on Networking in advance for
their review efforts and helpful feedback. We also wish you
health and safety during the coronavirus pandemic.

The work is supported in part by National Natural Science
Foundation of China under Grant No. 62172358, Natural
Science Foundation of Zhejiang Province under Grant No.
LY19F020050, National Natural Science Foundation of under
Grant No. 61772236, Zhejiang Key R&D Plan under Grant
No. 2019C03133, Alibaba-Zhejiang University Joint Institute
of Frontier Technologies, Research Institute of Cyberspace
Governance in Zhejiang University, and Leading Innovative
and Entrepreneur Team Introduction Program of Zhejiang.

REFERENCES

[1] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown,
“I know what your packet did last hop: Using packet histories to
troubleshoot networks,” in NSDI, 2014, pp. 71–85.

[2] M. Kuzniar, P. Peresini, and D. Kostic, “What you need to know about
sdn flow tables,” in PAM, 2015, pp. 347–359.

[3] P. Peresini, M. Kuzniar, and D. Kostic, “Dynamic, fine-grained data
plane monitoring with monocle,” IEEE ACM Transactions on Network-
ing, vol. 26, no. 1, pp. 534–547, 2018.

[4] K. Bu, X. Wen, B. Yang, Y. Chen, L. E. Li, and X. Chen, “Is every
flow on the right track?: Inspect sdn forwarding with rulescope,” in
INFOCOM, 2016, pp. 1–9.

[5] X. Wen, K. Bu, B. Yang, Y. Chen, L. E. Li, X. Chen, J. Yang, and
X. Leng, “Rulescope: Inspecting forwarding faults for software-defined
networking,” IEEE/ACM Transactions On Networking, vol. 25, no. 4,
pp. 2347–2360, 2017.

[6] P. Zhang, H. Li, C. Hu, L. Hu, L. Xiong, R. Wang, and Y. Zhang, “Mind
the gap: Monitoring the control-data plane consistency in software
defined networks,” in CoNEXT, 2016, pp. 19–33.

[7] T. Sasaki, C. Pappas, T. Lee, T. Hoefler, and A. Perrig, “Sdnsec:
Forwarding accountability for the sdn data plane,” in ICCCN, 2016,
pp. 1–10.

[8] P. Zhang, “Towards rule enforcement verification for software defined
networks,” in INFOCOM, 2017, pp. 1–9.

[9] P. Zhang, H. Wu, D. Zhang, and Q. Li, “Verifying rule enforcement
in software defined networks with rev,” IEEE/ACM Transactions on
Networking, vol. 28, no. 2, pp. 917–929, 2020.

[10] S. Xiong, Q. Cao, and W. Si, “Adaptive path tracing with programmable
bloom filters in software-defined networks,” in INFOCOM, 2019, pp.
496–504.

[11] S. Lee, S. Woo, J. Kim, V. Yegneswaran, P. Porras, and S. Shin,
“Audisdn: Automated detection of network policy inconsistencies in
software-defined networks,” in INFOCOM, 2020, pp. 1788–1797.

[12] P. Zhang, S. Xu, Z. Yang, H. Li, Q. Li, H. Wang, and C. Hu,
“Foces: Detecting forwarding anomalies in software defined networks,”
in ICDCS, 2018, pp. 830–840.

[13] P. Zhang, F. Zhang, S. Xu, Z. Yang, H. Li, Q. Li, H. Wang, C. Shen, and
C. Hu, “Network-wide forwarding anomaly detection and localization
in software defined networks,” IEEE/ACM Transactions on Networking,
vol. 29, no. 1, pp. 332–345, 2020.

[14] P. Zhang, C. Zhang, and C. Hu, “Fast testing network data plane with
rulechecker,” in ICNP, 2017, pp. 1–10.

[15] ——, “Fast data plane testing for software-defined networks with
rulechecker,” IEEE/ACM Transactions on Networking, vol. 27, no. 1,
pp. 173–186, 2018.

[16] A. Shukla, S. J. Saidi, S. Schmid, M. Canini, T. Zinner, and A. Feld-
mann, “Toward consistent sdns: A case for network state fuzzing,” IEEE
Transactions on Network and Service Management, vol. 17, no. 2, pp.
668–681, 2019.

[17] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” CCR, vol. 38, no. 2, pp. 69–74, 2008.

[18] M. Kuźniar, P. Perešı́ni, D. Kostić, and M. Canini, “Methodology, mea-
surement and analysis of flow table update characteristics in hardware
openflow switches,” Computer Networks, vol. 136, pp. 22–36, 2018.

[19] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “Automatic test
packet generation,” in CoNEXT, 2012, pp. 241–252.

[20] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv,
M. Schapira, and A. Valadarsky, “Vericon: towards verifying controller
programs in software-defined networks,” in PLDI, 2014, pp. 282–293.

[21] L. Xu, J. Huang, S. Hong, J. Zhang, and G. Gu, “Attacking the brain:
Races in the sdn control plane,” in USENIX Security Symposium, 2017,
pp. 451–468.

[22] Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo, “Automated bug
removal for software-defined networks,” in NSDI, 2017, pp. 719–733.

[23] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford, “A nice
way to test openflow applications.” in NSDI, 2012, pp. 127–140.

[24] Y. Yuan, S.-J. Moon, S. Uppal, L. Jia, and V. Sekar, “Netsmc: A custom
symbolic model checker for stateful network verification,” in NSDI,
2020, pp. 181–200.

[25] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks.” in NSDI, 2012, pp. 113–126.

[26] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, “Veriflow: Verifying
network-wide invariants in real time,” in NSDI, 2013, pp. 15–27.

[27] S. Prabhu, K. Y. Chou, A. Kheradmand, B. Godfrey, and M. Caesar,
“Plankton: Scalable network configuration verification through model
checking,” in NSDI, 2020, pp. 953–967.

[28] P. Zhang, X. Liu, H. Yang, N. Kang, Z. Gu, and H. Li, “Apkeep:
Realtime verification for real networks,” in NSDI, 2020, pp. 241–255.

[29] P. Zhang, A. Gember-Jacobson, Y. Zuo, Y. Huang, X. Liu, and H. Li,
“Differential network analysis,” in NSDI, 2022, pp. 601–615.

[30] C. Pang, Y. Jiang, and Q. Li, “Fade: Detecting forwarding anomaly in
software-defined networks,” in ICC, 2016, pp. 1–6.

[31] S. Narayana, M. Tahmasbi, J. Rexford, and D. Walker, “Compiling path
queries,” in NSDI, 2016, pp. 207–222.

[32] P. Tammana, R. Agarwal, and M. Lee, “Cherrypick: Tracing packet
trajectory in software-defined datacenter networks,” in SOSR, 2015, pp.
1–7.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. XX, NO. YY, MONTH 2022 13

[33] ——, “Simplifying datacenter network debugging with pathdump,” in
OSDI, 2016, pp. 233–248.

[34] ——, “Distributed network monitoring and debugging with switch-
pointer,” in NSDI, 2018, pp. 453–456.

[35] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “Sphinx: Detecting
security attacks in software-defined networks.” in NDSS, vol. 15, 2015,
pp. 8–11.

[36] F. Tomonori, “Introduction to ryu sdn framework,” Open Networking
Summit, pp. 1–14, 2013.

[37] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and
implementation of open vswitch,” in NSDI, 2015, pp. 117–130.

[38] A. Horn, A. Kheradmand, and M. Prasad, “Delta-net: Real-time network
verification using atoms,” in NSDI, 2017, pp. 735–749.

[39] O. S. Specification, “Version 1.5. 1, standard, open networking founda-
tion. 2015,” 2017.

[40] J. Naous, M. Walfish, A. Nicolosi, D. Mazières, M. Miller, and
A. Seehra, “Verifying and enforcing network paths with icing,” in
CoNEXT, 2011, pp. 1–12.

[41] T. H.-J. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu, and A. Perrig,
“Lightweight source authentication and path validation,” in SIGCOMM,
2014, pp. 271–282.

[42] D. Barrera, L. Chuat, A. Perrig, R. M. Reischuk, and P. Szalachowski,
“The scion internet architecture,” Communications of the ACM, vol. 60,
no. 6, pp. 56–65, 2017.

[43] K. Bu, A. Laird, Y. Yang, L. Cheng, J. Luo, Y. Li, and K. Ren,
“Unveiling the mystery of internet packet forwarding: A survey of
network path validation,” ACM Computing Surveys, vol. 53, no. 5, pp.
1–34, 2020.

[44] Q. Li, X. Zou, Q. Huang, J. Zheng, and P. P. Lee, “Dynamic packet
forwarding verification in sdn,” IEEE Transactions on Dependable and
Secure Computing, vol. 16, no. 6, pp. 915–929, 2018.

[45] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Cacheflow:
Dependency-aware rule-caching for software-defined networks,” in
SOSR, 2016, pp. 1–12.

[46] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis.” in NSDI, 2013, pp. 99–111.

[47] Y. Zhou, C. Sun, H. H. Liu, R. Miao, S. Bai, B. Li, Z. Zheng, L. Zhu,
Z. Shen, Y. Xi et al., “Flow event telemetry on programmable data
plane,” in SIGCOMM, 2020, pp. 76–89.

[48] A. Bremler-Barr, D. Hay, D. Hendler, and R. M. Roth, “Peds: a parallel
error detection scheme for tcam devices,” IEEE/ACM Transactions on
Networking, vol. 18, no. 5, pp. 1665–1675, 2010.

[49] S. Pontarelli, M. Ottavi, A. Evans, and S.-J. Wen, “Error detection in
ternary cams using bloom filters,” in DATE, 2013, pp. 1474–1479.

[50] P. Reviriego, S. Pontarelli, and A. Ullah, “Error detection and correction
in sram emulated tcams,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 27, no. 2, pp. 486–490, 2018.

[51] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath tcp,” in SIGCOMM, 2011, pp. 266–277.

Shaoke Xi received the B.Sc degree in computer sci-
ence and technology from Northeastern University,
Shenyang, China, in 2019. She is currently pursing
the Ph.D. degree major in cyber science and tech-
nology with Zhejiang University, Hangzhou, China.
Her research interests include network security and
blockchain networks.

Kai Bu received the B.Sc. and M.Sc. degrees in
computer science from the Nanjing University of
Posts and Telecommunications, Nanjing, China, in
2006 and 2009, respectively, and the Ph.D. degree in
computer science from The Hong Kong Polytechnic
University, Hong Kong, in 2013. He is currently
an Associate Professor with the College of Com-
puter Science and Technology, Zhejiang University,
Hangzhou, China. His research interests include
network security and computer architecture. He is
a member of the ACM, the IEE, and the CCF. He

was a recipient of the Best Paper Award of IEEE/IFIP EUC 2011 and the
Best Paper Nominee of IEEE ICDCS 2016.

Wensen Mao received the B.Eng degree in computer
science from Zhejiang University, Hangzhou, China,
2020. His current research interest is neuralsymbolic
programming.

Xiaoyu Zhang received the B.Eng degree in com-
puter science from Zhejiang University, Hangzhou,
China, 2022. Her research interest includes network
security.

Kui Ren is a professor and associate dean of College
of Computer Science and Technology at Zhejiang
University, where he also directs the Institute of
Cyber Science and Technology. Before that, he was
with State University of New York at Buffalo. He
received his PhD degree in Electrical and Com-
puter Engineering fromWorcester Polytechnic Insti-
tute. Kui’s current research interests include Data
Security, IoT Security, AI Security, and Privacy. He
received Guohua Distinguished Scholar Award from
ZJU in 2020, IEEE CISTC Technical Recognition

Award in 2017, SUNY Chancellor’s Research Excellence Award in 2017,
Sigma Xi Research Excellence Award in 2012 and NSF CAREER Award in
2011. Kui has published extensively in peer-reviewed journals and conferences
and received the Test-of-time Paper Award from IEEE INFOCOM and many
Best Paper Awards from IEEE and ACM including MobiSys’20, ICDCS’20,
Globecom’19, ASIACCS’18, ICDCS’17, etc. His h-index is 74, and his total
publication citation exceeds 32,000 according to Google Scholar. Kui is a
Fellow of ACM, a Fellow of IEEE, and a Clarivate Highly-Cited Researcher.
He is a frequent reviewer for funding agencies internationally and serves on
the editorial boards of many IEEE and ACM journals. He currently serves as
Chair of SIGSAC of ACM China.

Xinxin Ren was with the GTTX Network Technology, China. His research
interest includes network security.

